Project description:The recent outbreak of the coronavirus disease 2019 (COVID-19) pandemic and the continuous evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have highlighted the significance of new detection methods for global monitoring and prevention. Although quantitative reverse transcription PCR (RT-qPCR), the current gold standard for diagnosis, performs excellently in genetic testing, its multiplexing capability is limited because of the signal crosstalk of various fluorophores. Herein, we present a highly efficient platform which combines 17-plex assays with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), enabling the targeting of 14 different mutation sites of the spike gene. Diagnosis using a set of 324 nasopharyngeal swabs or sputum clinical samples with SARS-CoV-2 MS method was identical to that with the RT-qPCR. The detection consistency of mutation sites was 97.9% (47/48) compared to Sanger sequencing without cross-reaction with other respiratory-related pathogens. Therefore, the MS method is highly potent to track and assess SARS-CoV-2 changes in a timely manner, thereby aiding the continuous response to viral variation and prevention of further transmission.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by differences in transmissibility and response to therapeutics. Therefore, discriminating among them is vital for surveillance, infection prevention, and patient care. While whole viral genome sequencing (WGS) is the "gold standard" for variant identification, molecular variant panels have become increasingly available. Most, however, are based on limited targets and have not undergone comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena MassARRAY ® SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 clinical RNA specimens collected across our health systems in New York City, USA as well as in Bogotá, Colombia (September 2, 2020 - March 2, 2022). We demonstrate almost perfect levels of interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for contemporary variants (e.g., Iota, Alpha, Delta, Omicron [BA.1 sublineage]) and a high diagnostic specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlight distinct target patterns that can be utilized to identify variants not yet defined on the panel including the Omicron BA.2 and other sublineages. These findings exemplify the power of highly multiplexed diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new ones.ImportanceThe continued circulation of SARS-CoV-2 amidst limited surveillance efforts and inconsistent vaccination of populations has resulted in emergence of variants that uniquely impact public health systems. Thus, in conjunction with functional and clinical studies, continuous detection and identification are quintessential to inform diagnostic and public health measures. Furthermore, until WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like SARS-CoV-2. Here, we highlight the diagnostic capabilities of a highly multiplexed commercial assay to identify diverse SARS-CoV-2 lineages that circulated at over September 2, 2020 - March 2, 2022 among patients seeking care at our health systems. This assay demonstrates variant-specific signatures of nucleotide/amino acid polymorphisms and underscores its utility for detection of contemporary and emerging SARS-CoV-2 variants of concern.
Project description:Mass mapping using high-resolution mass spectrometry has been applied to identify and rapidly distinguish SARS-CoV-2 coronavirus strains across five major variants of concern. Deletions or mutations within the surface spike protein across these variants, which originated in the UK, South Africa, Brazil and India (known as the alpha, beta, gamma and delta variants respectively), lead to associated mass differences in the mass maps. Peptides of unique mass have thus been determined that can be used to identify and distinguish the variants. The same mass map profiles are also utilized to construct phylogenetic trees, without the need for protein (or gene) sequences or their alignment, in order to chart and study viral evolution. The combined strategy offers advantages over conventional PCR-based gene-based approaches exploiting the ease with which protein mass maps can be generated and the speed and sensitivity of mass spectrometric analysis.
Project description:Rising population density and global mobility are among the reasons why pathogens such as SARS-CoV-2, the virus that causes COVID-19, spread so rapidly across the globe. The policy response to such pandemics will always have to include accurate monitoring of the spread, as this provides one of the few alternatives to total lockdown. However, COVID-19 diagnosis is currently performed almost exclusively by reverse transcription polymerase chain reaction (RT-PCR). Although this is efficient, automatable, and acceptably cheap, reliance on one type of technology comes with serious caveats, as illustrated by recurring reagent and test shortages. We therefore developed an alternative diagnostic test that detects proteolytically digested SARS-CoV-2 proteins using mass spectrometry (MS). We established the Cov-MS consortium, consisting of 15 academic laboratories and several industrial partners to increase applicability, accessibility, sensitivity, and robustness of this kind of SARS-CoV-2 detection. This, in turn, gave rise to the Cov-MS Digital Incubator that allows other laboratories to join the effort, navigate, and share their optimizations and translate the assay into their clinic. As this test relies on viral proteins instead of RNA, it provides an orthogonal and complementary approach to RT-PCR using other reagents that are relatively inexpensive and widely available, as well as orthogonally skilled personnel and different instruments. Data are available via ProteomeXchange with identifier PXD022550.
Project description:The COVID-19 pandemic caused by SARS-CoV-2 has become a major threat across the globe. Here, we developed machine learning approaches to identify key pathogenic regions in coronavirus genomes. We trained and evaluated 7,562,625 models on 3,665 genomes including SARS-CoV-2, MERS-CoV, SARS-CoV, and other coronaviruses of human and animal origins to return quantitative and biologically interpretable signatures at nucleotide and amino acid resolutions. We identified hotspots across the SARS-CoV-2 genome, including previously unappreciated features in spike, RdRp, and other proteins. Finally, we integrated pathogenicity genomic profiles with B cell and T cell epitope predictions for enrichment of sequence targets to help guide vaccine development. These results provide a systematic map of predicted pathogenicity in SARS-CoV-2 that incorporates sequence, structural, and immunologic features, providing an unbiased collection of genetic elements for functional studies. This metavirome-based framework can also be applied for rapid characterization of new coronavirus strains or emerging pathogenic viruses.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Project description:ObjectiveThe rapid detection and differentiation of strains of the BA.2.86 lineage including the new sub-variant JN.1 (BA.2.86.1.1) is demonstrated employing selected ion monitoring (SIM) and high resolution mass spectrometry.MethodsA study of a preliminary set of BA.2.86 lineage positive specimens, identified BA.2.86 and BA.2.86.1.1 peptide markers in 62.5 % and 29.1 % of samples.ResultsPeptide-specific markers in the surface spike protein associated with the L455S mutation are confidently detected with high sensitivity in protein and virus digests.The virus was thus confidently assigned in over 91 % of positive specimens.ConclusionsA rise in the global prevalence of the JN.1 (BA.2.86.1.1) immune evasive sub-variant, that emerged in late 2023, requires that new strategies and protocols to detect such strains in human specimens are accelerated and implemented.
Project description:The spike glycoprotein mediates virus binding to the host cells and is a key target for vaccines development. One SARS-CoV-2 vaccine is based on vesicular stomatitis virus (VSV), in which the native surface glycoprotein has been replaced by the SARS-CoV-2 spike protein (VSV-ΔG-spike). The titer of the virus is quantified by the plaque forming unit (PFU) assay, but there is no method for spike protein quantitation as an antigen in a VSV-based vaccine. Here, we describe a mass spectrometric (MS) spike protein quantification method, applied to VSV-ΔG-spike based vaccine. Proof of concept of this method, combining two different sample preparations, is shown for complex matrix samples, produced during the vaccine manufacturing processes. Total spike levels were correlated with results from activity assays, and ranged between 0.3-0.5 μg of spike protein per 107 PFU virus-based vaccine. This method is simple, linear over a wide range, allows quantification of antigen within a sample and can be easily implemented for any vaccine or therapeutic sample.