Ontology highlight
ABSTRACT: Objectives
Little is known about proactive risk assessment concerning emergency department (ED) visits and hospitalizations in patients with heart failure (HF) who receive home healthcare (HHC) services. This study developed a time series risk model for predicting ED visits and hospitalizations in patients with HF using longitudinal electronic health record data. We also explored which data sources yield the best-performing models over various time windows.Materials and methods
We used data collected from 9362 patients from a large HHC agency. We iteratively developed risk models using both structured (eg, standard assessment tools, vital signs, visit characteristics) and unstructured data (eg, clinical notes). Seven specific sets of variables included: (1) the Outcome and Assessment Information Set, (2) vital signs, (3) visit characteristics, (4) rule-based natural language processing-derived variables, (5) term frequency-inverse document frequency variables, (6) Bio-Clinical Bidirectional Encoder Representations from Transformers variables, and (7) topic modeling. Risk models were developed for 18 time windows (1-15, 30, 45, and 60 days) before an ED visit or hospitalization. Risk prediction performances were compared using recall, precision, accuracy, F1, and area under the receiver operating curve (AUC).Results
The best-performing model was built using a combination of all 7 sets of variables and the time window of 4 days before an ED visit or hospitalization (AUC = 0.89 and F1 = 0.69).Discussion and conclusion
This prediction model suggests that HHC clinicians can identify patients with HF at risk for visiting the ED or hospitalization within 4 days before the event, allowing for earlier targeted interventions.
SUBMITTER: Chae S
PROVIDER: S-EPMC10531127 | biostudies-literature | 2023 Sep
REPOSITORIES: biostudies-literature
Chae Sena S Davoudi Anahita A Song Jiyoun J Evans Lauren L Hobensack Mollie M Bowles Kathryn H KH McDonald Margaret V MV Barrón Yolanda Y Rossetti Sarah Collins SC Cato Kenrick K Sridharan Sridevi S Topaz Maxim M
Journal of the American Medical Informatics Association : JAMIA 20230901 10
<h4>Objectives</h4>Little is known about proactive risk assessment concerning emergency department (ED) visits and hospitalizations in patients with heart failure (HF) who receive home healthcare (HHC) services. This study developed a time series risk model for predicting ED visits and hospitalizations in patients with HF using longitudinal electronic health record data. We also explored which data sources yield the best-performing models over various time windows.<h4>Materials and methods</h4>W ...[more]