Project description:Genetic studies and differing population trends support the separation of Steller sea lions (Eumetopias jubatus) into a western distinct population segment (WDPS) and an eastern DPS (EDPS) with the dividing line between populations at 144° W. Despite little exchange for thousands of years, the gap between the breeding ranges narrowed during the past 15-30 years with the formation of new rookeries near the DPS boundary. We analyzed >22,000 sightings of 4,172 sea lions branded as pups in each DPS from 2000-2010 to estimate probabilities of a sea lion born in one DPS being seen within the range of the other DPS (either 'West' or 'East'). Males from both populations regularly traveled across the DPS boundary; probabilities were highest at ages 2-5 and for males born in Prince William Sound and southern Southeast Alaska. The probability of WDPS females being in the East at age 5 was 0.067 but 0 for EDPS females which rarely traveled to the West. Prince William Sound-born females had high probabilities of being in the East during breeding and non-breeding seasons. We present strong evidence that WDPS females have permanently emigrated to the East, reproducing at two 'mixing zone' rookeries. We documented breeding bulls that traveled >6,500 km round trip from their natal rookery in southern Alaska to the northern Bering Sea and central Aleutian Islands and back within one year. WDPS animals began moving East in the 1990s, following steep population declines in the central Gulf of Alaska. Results of our study, and others documenting high survival and rapid population growth in northern Southeast Alaska suggest that conditions in this mixing zone region have been optimal for sea lions. It is unclear whether eastward movement across the DPS boundary is due to less-optimal conditions in the West or a reflection of favorable conditions in the East.
Project description:The two stocks of Steller sea lions (Eumetopias jubatus) in Alaska include an endangered western stock, recently recovering in parts of its range following decades of decline, and an eastern stock which was removed from the U.S. Endangered Species List in 2013 following increasing numbers since the 1970s. Information on overlapping distributions of eastern and western sea lions is needed for management considerations. We analyzed >30,000 sightings collected from 2000-2014 of 2,385 sea lions that were branded as pups at 10 Alaskan rookeries to examine mesoscale (mostly <500km) spatial distribution, geographic range, and geographic population structure based on natal rookery, sex, and age during breeding and non-breeding seasons. Analyses of summary movement measures (e.g., natal rookery, sex, and age-class differences in spatial distribution and geographic range) indicate wide variation in rookery-specific movement patterns. Correlations between movement measures and population dynamics suggested movement patterns could be a function of density dependence. Animals from larger rookeries, and rookeries with slower population growth and lower survival, had wider dispersion than animals from smaller rookeries, or rookeries with high growth and survival. Sea lions from the largest rookery, Forrester Island, where survival and population trends are lowest, were the most widely distributed. Analysis of geographic population structure indicated that animals born in the eastern Aleutian Islands had the most distinct movements and had little overlap with other western sea lions. Northern Southeast Alaska, within the eastern stock, is the area of greatest overlap between stocks, and is important to western animals, especially those born in Prince William Sound. Detailed knowledge of distribution and movements of western sea lions is useful for defining recovery and population trend analysis regions that better reflect dispersion and population structure and provides valuable information to managers as critical habitat is re-evaluated and the location of the stock boundary reconsidered.
Project description:Population dynamics of long-lived vertebrates depend critically on adult survival, yet factors affecting survival and covariation between survival and other vital rates in adults remain poorly examined for many taxonomic groups of long-lived mammals (e.g. actuarial senescence has been examined for only 9 of 34 extant pinniped species using longitudinal data). We used mark-recapture models and data from 2795 Steller sea lion (Eumetopias jubatus) pups individually marked at four of five rookeries in southeastern Alaska (SEAK) and resighted for 21 years to examine senescence, annual variability and covariation among life-history traits in this long-lived, sexually dimorphic pinniped. Sexes differed in age of onset (approx. 16-17 and approx. 8-9 years for females and males, respectively), but not rate (-0.047 and -0.046/year of age for females and males) of senescence. Survival of adult males from northern SEAK had greatest annual variability (approx. ±0.30 among years), whereas survival of adult females ranged approximately ±0.10 annually. Positive covariation between male survival and reproductive success was observed. Survival of territorial males was 0.20 higher than that of non-territorial males, resulting in the majority of males alive at oldest ages being territorial.
Project description:After a dramatic population decline, Steller sea lions have begun to recover throughout most of their range. However, Steller sea lions in the Western Aleutians and Commander Islands are continuing to decline. Comparing survival rates between regions with different population trends may provide insights into the factors driving the dynamics, but published data on vital rates have been extremely scarce, especially in regions where the populations are still declining. Fortunately, an unprecedented dataset of marked Steller sea lions at rookeries in the Russian Far East is available, allowing us to determine age and sex specific survival in sea lions up to 22 years old. We focused on survival rates in three areas in the Russian range with differing population trends: the Commander Islands (Medny Island rookery), Eastern Kamchatka (Kozlov Cape rookery) and the Kuril Islands (four rookeries). Survival rates differed between these three regions, though not necessarily as predicted by population trends. Pup survival was higher where the populations were declining (Medny Island) or not recovering (Kozlov Cape) than in all Kuril Island rookeries. The lowest adult (> 3 years old) female survival was found on Medny Island and this may be responsible for the continued population decline there. However, the highest adult survival was found at Kozlov Cape, not in the Kuril Islands where the population is increasing, so we suggest that differences in birth rates might be an important driver of these divergent population trends. High pup survival on the Commander Islands and Kamchatka Coast may be a consequence of less frequent (e.g. biennial) reproduction there, which may permit females that skip birth years to invest more in their offspring, leading to higher pup survival, but this hypothesis awaits measurement of birth rates in these areas.
Project description:Steller sea lion (Eumetopias jubatus) numbers are beginning to recover across most of the western distinct population segment following catastrophic declines that began in the 1970s and ended around the turn of the century. This study makes use of contemporary vital rate estimates from a trend-site rookery in the eastern Gulf of Alaska (a sub-region of the western population) in a matrix population model to estimate the trend and strength of the recovery across this region between 2003 and 2013. The modeled population trend was projected into the future based on observed variation in vital rates and a prospective elasticity analysis was conducted to determine future trends and which vital rates pose the greatest threats to recovery. The modeled population grew at a mean rate of 3.5% per yr between 2003 and 2013 and was correlated with census count data from the local rookery and throughout the eastern Gulf of Alaska. If recent vital rate estimates continue with little change, the eastern Gulf of Alaska population could be fully recovered to pre-decline levels within 23 years. With density dependent growth, the population would need another 45 years to fully recover. Elasticity analysis showed that, as expected, population growth rate (λ) was most sensitive to changes in adult survival, less sensitive to changes in juvenile survival, and least sensitive to changes in fecundity. A population decline could be expected with only a 6% decrease in adult survival, whereas a 32% decrease in fecundity would be necessary to bring about a population decline. These results have important implications for population management and suggest current research priorities should be shifted to a greater emphasis on survival rates and causes of mortality.
Project description:Assessing the physiological impact of stressors in pinnipeds is logistically challenging, and many hormones are altered by capture and handling, limiting the utility of metabolically active tissues. Hair is increasingly being used to investigate stress-related and reproductive hormones in wildlife populations due to less-invasive collection methods, being metabolically inert once grown and containing multiple biomarkers of ecological interest. We validated enzyme immunoassays for measuring aldosterone, cortisol, corticosterone, and testosterone in lanugo (natal hair grown in utero) samples collected from Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), and northern fur seals (Callorhinus ursinus). We applied laboratory validation methods including recovery of added mass, parallelism and dilution linearity. We found no effects due to differences in alcohol- versus detergent-based cleaning methods. Further, there were no significant differences in hormone concentrations in hair samples collected immediately after the molt and the subsequent samples collected over 1 year, indicating steroid hormones are stable once deposited into pinniped hair. We found no sex differences in any hormone concentrations, likely due to the lanugo being grown in utero and influenced by maternal hormone concentrations. For Steller sea lion and California sea lion pups, we found hormone concentrations significantly differed between rookeries, which warrants future research. Hair provides a novel tissue to explore the intrinsic or extrinsic drivers behind hormone measurements in otariids, which can be paired with multiple health-related metrics to further investigate possible drivers of physiological stress.
Project description:BackgroundA utilization distribution quantifies the temporal and spatial probability of space use for individuals or populations. These patterns in movement arise from individuals' internal state and from their response to the external environment, and thus can provide insights for assessing factors associated with the management of threatened populations. The Western Distinct Population Segment of the Steller sea lion (Eumetopias jubatus) has declined to approximately 20% of levels encountered 40 years ago. At the height of the decline, juvenile survival appeared to be depressed and currently there is evidence that juvenile mortality due to predation may be constraining recovery in some regions. Therefore, our objectives were to identify what spaces are biologically important to juvenile Steller sea lions in the Kenai Fjords and Prince William Sound regions of the Gulf of Alaska.MethodsWe examined geospatial location data from juvenile sea lions tagged between 2000 and 2014 (n = 84) and derived individual and pooled-population utilization distributions (UDs) from their movements. Core areas were defined from the UDs using an individual-based approach; this quantitatively confirmed that all individuals in our sample exhibited concentrated use within their home range (95% UD). Finally, we explored if variation in UD characteristics were associated with sex, season, age, or region.ResultsWe found evidence that individual juvenile home ranges were region and sex-specific, with males having larger home ranges on average. Core space characteristics were also sex-specific, and exhibited seasonal patterns of reduced size, increased proximity to haulouts, and increased intensity of use in the summer, but only in the Kenai Fjords-Gulf of Alaska region.ConclusionsThis study highlights the areas of biological importance during this vulnerable life history stage, and the demographic, seasonal, and spatial factors associated with variation in movement patterns for a marine mesopredator. This can be useful information for promoting species recovery, and for future efforts to understand ecological patterns such as predator-prey interactions.
Project description:Two novel research approaches were developed to facilitate controlled access to, and long-term monitoring of, juvenile Steller sea lions for periods longer than typically afforded by traditional fieldwork. The Transient Juvenile Steller sea lion Project at the Alaska SeaLife Center facilitated nutritional, physiological, and behavioral studies on the platform of temporary captivity. Temporarily captive sea lions (TJs, n = 35) were studied, and were intraperitoneally implanted with Life History Transmitters (LHX tags) to determine causes of mortality post-release. Our goal was to evaluate the potential for long-term impacts of temporary captivity and telemetry implants on the survival of study individuals. A simple open-population Cormack-Jolly-Seber mark-recapture model was built in program MARK, incorporating resightings of uniquely branded study individuals gathered by several contributing institutions. A priori models were developed to weigh the evidence of effects of experimental treatment on survival with covariates of sex, age, capture age, cohort, and age class. We compared survival of experimental treatment to a control group of n = 27 free-ranging animals (FRs) that were sampled during capture events and immediately released. Sex has previously been show to differentially affect juvenile survival in Steller sea lions. Therefore, sex was included in all models to account for unbalanced sex ratios within the experimental group. Considerable support was identified for the effects of sex, accounting for over 71% of total weight for all a priori models with delta AICc <5, and over 91% of model weight after removal of pretending variables. Overall, most support was found for the most parsimonious model based on sex and excluding experimental treatment. Models including experimental treatment were not supported after post-hoc considerations of model selection criteria. However, given the limited sample size, alternate models including effects of experimental treatments remain possible and effects may yet become apparent in larger sample sizes.