Project description:BackgroundNervous tissue is an inherent component of the many specialized genital structures for transferring sperm directly into the female's body. However, the male copulatory organ of spiders was considered a puzzling exception. Based on the recent discovery of nervous tissue in the pedipalps of two distantly related spider species, we investigated representatives of all major groups across the spider tree of life for the presence of palpal nerves. We used a correlative approach that combined histology, micro-computed tomography and electron microscopy.ResultsWe show that the copulatory organ is innervated in all species investigated. There is a sensory organ at the base of the sperm transferring sclerite in several taxa and nervous tissue occurs close to the glandular tissue of the spermophor, where sperm are stored before transfer.ConclusionsThe innervation of the copulatory organ by the bulb nerve and associated efferent fibers is part of the ground pattern of spiders. Our findings pave the way for unraveling the sensory interaction of genitalia during mating and for the still enigmatic mode of uptake and release of sperm from the male copulatory organ.
Project description:BackgroundAnimals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities.Methodology/principal findingsWe tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders).Conclusions/significanceSeveral lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of sexual size dimorphism and sociality.
Project description:New Zealand (NZ) has long been upheld as the archetypical example of a land where the biota evolved without nonvolant terrestrial mammals. Their absence before human arrival is mysterious, because NZ was still attached to East Antarctica in the Early Cretaceous when a variety of terrestrial mammals occupied the adjacent Australian portion of Gondwana. Here we report discovery of a nonvolant mammal from Miocene (19-16 Ma) sediments of the Manuherikia Group near St Bathans (SB) in Central Otago, South Island, NZ. A partial relatively plesiomorphic femur and two autapomorphically specialized partial mandibles represent at least one mouse-sized mammal of unknown relationships. The material implies the existence of one or more ghost lineages, at least one of which (based on the relatively plesiomorphic partial femur) spanned the Middle Miocene to at least the Early Cretaceous, probably before the time of divergence of marsupials and placentals > 125 Ma. Its presence in NZ in the Middle Miocene and apparent absence from Australia and other adjacent landmasses at this time appear to reflect a Gondwanan vicariant event and imply persistence of emergent land during the Oligocene marine transgression of NZ. Nonvolant terrestrial mammals disappeared from NZ some time since the Middle Miocene, possibly because of late Neogene climatic cooling.
Project description:Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.
Project description:The male genitalia of pholcid spiders, which is one of the most species-rich spider families, are characterized by a procursus, which is a morphologically diverse projection of the copulatory organ. It has been shown that the procursus interacts with the female genitalia during copulation. Here, we investigate the function of the procursus in Gertschiola neuquena, a species belonging to the early branched and understudied subfamily Ninetinae, using behavioural and morphological data. Although many aspects of the copulatory behaviour of G. neuquena follow the general pattern described for the family, males use only one pedipalp during each copulation. Based on our micro-CT analysis of cryofixed mating pairs using virgin females, we can show that the long and filiform procursus is inserted deeply into the unpaired convoluted female spermatheca, and the intromittent sclerite, the embolus, is rather short and stout only reaching the most distal part of the female sperm storage organ. Histological data revealed that sperm are present in the most proximal part of the spermatheca, suggesting that the procursus is used to allocate sperm deeply into the female sperm storage organ. This represents the first case of a replacement of the sperm allocation function of the intromittent sclerite in spiders.
Project description:Mesospheric Green emissions from excited Oxygen in Sprite Tops (ghosts) are infrequent and faint greenish transient luminous events that remain for hundreds of milliseconds on top of certain energetic sprites. The main hypothesis to explain this glow persistence is the long lifetime of excited atomic oxygen at 557.73 nm, a well-known emission line in aurora and airglow. However, due to the lack of spectroscopic campaigns to analyse such events to date, the species involved in the process can not yet be identified. Here we report observational results showing the temporal evolution of a ghost spectrum between 500 nm and 600 nm. Besides weak -but certain- traces of excited atomic oxygen, our results show four main contributors related to the slow decay of the glow: atomic iron and nickel, molecular nitrogen and ionic molecular oxygen. Additionally, we are able to identify traces of atomic sodium, and ionic silicon, these observations being consistent with previous direct measurements of density profiles of meteoric metals in the mesosphere and lower thermosphere. This finding calls for an upgrade of current air plasma kinetic understanding under the influence of transient luminous events.
Project description:Self-assembly of misfolded proteins into ordered fibrillar aggregates known as amyloid results in numerous human diseases. Despite an increasing number of proteins and peptide fragments being recognised as amyloidogenic, how these amyloid aggregates assemble remains unclear. In particular, the identity of the nucleating species, an ephemeral entity that defines the rate of fibril formation, remains a key outstanding question. Here, we propose a new strategy for analyzing the self-assembly of amyloid fibrils involving global analysis of a large number of reaction progress curves and the subsequent systematic testing and ranking of a large number of possible assembly mechanisms. Using this approach, we have characterized the mechanism of the nucleation-dependent formation of beta(2)-microglobulin (beta(2)m) amyloid fibrils. We show, by defining nucleation in the context of both structural and thermodynamic aspects, that a model involving a structural nucleus size approximately the size of a hexamer is consistent with the relatively small concentration dependence of the rate of fibril formation, contrary to expectations based on simpler theories of nucleated assembly. We also demonstrate that fibril fragmentation is the dominant secondary process that produces higher apparent cooperatively in fibril formation than predicted by nucleated assembly theories alone. The model developed is able to explain and predict the behavior of beta(2)m fibril formation and provides a rationale for explaining generic properties observed in other amyloid systems, such as fibril growth acceleration and pathway shifts under agitation.
Project description:The essential aspects of the ribosome's mechanism can be extracted from coarse-grained simulations, including the ratchet motion, the movement together of critical bases at the decoding center, and movements of the peptide tunnel lining that assist in the expulsion of the synthesized peptide. Because of its large size, coarse graining helps to simplify and to aid in the understanding of its mechanism. Results presented here utilize coarse-grained elastic network modeling to extract the dynamics, and both RNAs and proteins are coarse grained. We review our previous results, showing the well-known ratchet motions and the motions in the peptide tunnel and in the mRNA tunnel. The motions of the lining of the peptide tunnel appear to assist in the expulsion of the growing peptide chain, and clamps at the ends of the mRNA tunnel with three proteins ensure that the mRNA is held tightly during decoding and essential for the helicase activity at the entrance. The entry clamp may also assist in base recognition to ensure proper selection of the incoming tRNA. The overall precision of the ribosome machine-like motions is remarkable.
Project description:Individual cow identification is a prerequisite for intelligent dairy farming management, and is important for achieving accurate and informative dairy farming. Computer vision-based approaches are widely considered because of their non-contact and practical advantages. In this study, a method based on the combination of Ghost and attention mechanism is proposed to improve ReNet50 to achieve non-contact individual recognition of cows. In the model, coarse-grained features of cows are extracted using a large sensory field of cavity convolution, while reducing the number of model parameters to some extent. ResNet50 consists of two Bottlenecks with different structures, and a plug-and-play Ghost module is inserted between the two Bottlenecks to reduce the number of parameters and computation of the model using common linear operations without reducing the feature map. In addition, the convolutional block attention module (CBAM) is introduced after each stage of the model to help the model to give different weights to each part of the input and extract the more critical and important information. In our experiments, a total of 13 cows’ side view images were collected to train the model, and the final recognition accuracy of the model was 98.58%, which was 4.8 percentage points better than the recognition accuracy of the original ResNet50, the number of model parameters was reduced by 24.85 times, and the model size was only 3.61 MB. In addition, to verify the validity of the model, it is compared with other networks and the results show that our model has good robustness. This research overcomes the shortcomings of traditional recognition methods that require human extraction of features, and provides theoretical references for further animal recognition.
Project description:Reproduction in arthropods is an interesting area of research where intrasexual and intersexual mechanisms have evolved structures with several functions. The mating plugs usually produced by males are good examples of these structures where the main function is to obstruct the female genitalia against new sperm depositions. In spiders several types of mating plugs have been documented, the most common ones include solidified secretions, parts of the bulb or in some extraordinary cases the mutilation of the entire palpal bulb. Here, we describe the first case of modified setae, which are located on the cymbial dorsal base, used directly as a mating plug for the Order Araneae in the species Maeotasetastrobilaris sp. n. In addition the taxonomic description of Maeotasetastrobilaris sp. n. is provided and based on our findings the geographic distribution of this genus is extended to the Northern hemisphere.