Project description:Clinical vignette:A 68-year-old man with Parkinson's disease (PD) had bilateral GPi DBS placed for management of his motor fluctuations. He developed stimulation-induced dyskinesia (SID) with left dorsal GPi stimulation. Clinical dilemma:What do we know about SID in PD patients with GPi DBS? What are the potential strategies used to maximize the DBS therapeutic benefit and minimize the side effects of stimulation? Clinical solution:Avoiding the contact implicated in SID and programming more ventral contacts, using lower voltage, frequency and pulse width and programming in bipolar configuration all appear to help minimize the SID and provide appropriate symptomatic motor control. Gap in knowledge:Little is known about SID in patients with PD who had GPi DBS therapy. More studies using volume of tissue activated and diffusion tensor imaging MRI are needed to localize specific tracts in or around the GPi that may be implicated in SID.
Project description:Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the differentiation potential of the iPSCs or induce malignant transformation. Here, we show that fibroblasts from five patients with idiopathic Parkinson's disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons. Moreover, we derived hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Factor-free hiPSCs maintain a pluripotent state and show a global gene expression profile, more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.
Project description:Gravitational wave emission from stellar collapse has been studied for more than three decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.Electronic supplementary materialSupplementary material is available for this article at 10.12942/lrr-2003-2.
Project description:Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.Electronic supplementary materialSupplementary material is available for this article at 10.12942/lrr-2011-1.