Project description:Cocoa pod husks (CPHs), the major side-stream from cocoa production, were valorized through fermentation with Pleurotus salmoneo-stramineus (PSS). Considering ergosterol as a biomarker for the fungal content, the mycelium accounted for 54% of the total biomass after 8 days in submerged cultures. The crude protein content of fermented CPH (CPHF) increased from 7.3 g/100 g DM in CPH to 18.9 g/100 g DM. CPH fermentation resulted in a high biological value of 86 for the protein. The water and oil binding capacities of CPHF were 3.5 mL/g and 2.1 mL/g, respectively. The particle diameter dv,0,90 of CPHF was 373 μm as compared to 526 μm for CPH. The total dietary fiber was 73.4 g/100 g DM in CPHF and 63.6 g/100 g DM in CPH. The amount of soluble fiber was 2.3 g/100 g DM in CPHF and 10.1 g/100 g DM in CPH; the insoluble fraction accounted for 71.1 g/100 g DM and 53.6 g/100 g DM, respectively. Bread doughs with CPH or CPHF were characterized for texture, color, and farinographic properties. The dough hardness, consistency, and browning index increased with the concentration of CPH, whereas for CPHF, springiness and peak viscosities declined. We demonstrate the upcycling of CPH into nutritious and functional ingredients through PSS fermentation.
Project description:In order to make better use of lignocellulosic biomass for the production of renewable fuels and chemicals, it is necessary to disrupt its recalcitrant structure through pretreatment. Specifically, organosolv pretreatment is a feasible method. The main advantage of this method compared to other lignocellulosic pretreatment technologies is the extraction of high-quality lignin for the production of value-added products. In this study, bamboo was treated in a batch reactor with 70% ethanol at 180 °C for 2 h. Lignin fractions were isolated from the hydrolysate by centrifugation and then precipitated as ethanol organosolv lignin. Two types of milled wood lignins (MWLs) were isolated from the raw bamboo and the organosolv pretreated residue separately. After the pretreatment, a decrease of lignin (preferentially guaiacyl unit), hemicelluloses and less ordered cellulose was detected in the bamboo material. It was confirmed that the bamboo MWL is of HGS type (p-hydroxyphenyl (H), vanillin (G), syringaldehyde (S)) associated with a considerable amount of p-coumarate and ferulic esters of lignin. The ethanol organosolv treatment was shown to remove significant amounts of lignin and hemicelluloses without strongly affecting lignin primary structure and its lignin functional groups.
Project description:BackgroundUtilization of cocoa pod husks (CPH) in animal feed is hindered by the presence of theobromine, which is variably toxic to animals. Treatment of this agro-waste to remove theobromine, while preserving its nutrient content, would allow beneficial use of the millions of metric tonnes discarded annually. The aim of this study was to assess the suitability of selected theobromine-degrading filamentous fungi for use as bio-tools in degradation of theobromine in CPH.ResultsThe candidate fungi assessed in this study were an Aspergillus niger (AnTD) and three Talaromyces spp. (TmTD-1, TmTD-2, TvTD) isolates. All the fungi eliminated CPH theobromine, 0.15% w/w starting concentration, within 7 days of start of treatment, and were capable of degrading caffeine and theophylline. The fungi decreased CPH ochratoxin A content by 31-74%. Pectin was not detectable in fungus-treated CPH whereas parameters assessed for proximate composition were not affected.ConclusionsThe data provide ample evidence that the four isolates can be applied to CPH for the purpose of eliminating theobromine and decreasing ochratoxin A content without affecting nutrient profile. Comparatively, Talaromyces verruculosus TvTD was considered as most suitable for use as a bio-tool in detheobromination of CPH for animal feed.
Project description:Valorization of lignocellulosic biomass into a biorefinery scheme requires the use of all biomass components; in this, the lignin fraction is often underutilized. Conversion of lignin to nanoparticles is an attractive solution. Here, we investigated the effect of different lignin isolation processes and a post-treatment homogenization step on particle formation. Lignin was isolated from birch chips by using two organosolv processes, traditional organosolv (OS) and hybrid organosolv-steam explosion (HOS-SE) at various ethanol contents. For post-treatment, lignin was homogenized at 500 bar using different ethanol:water ratios. Isolation of lignin with OS resulted in unshaped lignin particles, whereas after HOS-SE, lignin micro-particles were formed directly. Addition of an acidic catalyst during HOS-SE had a negative impact on the particle formation, and the optimal ethanol content was 50⁻60% v/v. Homogenization had a positive effect as it transformed initially unshaped lignin into spherical nanoparticles and reduced the size of the micro-particles isolated by HOS-SE. Ethanol content during homogenization affected the size of the particles, with the optimal results obtained at 75% v/v. We demonstrate that organosolv lignin can be used as an excellent starting material for nanoparticle preparation, with a simple method without the need for extensive chemical modification. It was also demonstrated that tuning of the operational parameters results in nanoparticles of smaller size and with better size homogeneity.
Project description:The effects of hydrothermal pretreatment (170⁻180 °C, 30⁻60 min) on the structural characteristics of enzymatic and extracted lignin from Triarrhena lutarioriparia (TL) during the integrated delignification process have been comprehensively investigated. Ion chromatography and NMR characterization showed that liquid products after mild hydrothermal process (170 °C, 30 min) were mainly composed of xylooligosaccharide (XOS) with different degrees of polymerization (DP ≥ 2). In addition, the structural changes of lignin during hydrothermal pretreatment and organic acid delignification process have been demonstrated by quantitative 2D heteronuclear single quantum coherence (2D-HSQC) and 31P-NMR techniques. Results showed that the structural changes of lignin (e.g., cleavage of β-O-4 linkages) induced by the hydrothermal pretreatment will facilitate the subsequent organic acid delignification process, and acetylated lignin could be obtained with a considerable yield, which can be used in lignin-based composite and candidate feedstock for catalytic upgrading of lignin. In short, the proposed process facilitates the producing of XOS and acetylated lignin for lignin valorization.
Project description:Coffee husks are an abundant and underutilized biomass waste released from coffee production. Experimental analysis showed that coffee husks consisted of 39.2 ± 0.2 wt% cellulose, 12.6 ± 0.1 wt% hemicellulose, 23.3 ± 0.1 wt% Klason lignin, 2.9 ± 0.4 wt% acid-soluble lignin, 8.7 ± 0.2 wt% extractives, and 9.5 ± 0.2 wt% ash. Moreover, different minor elements, including K, Ca, Mg, Al, Fe, Ti, S, and Si, were found. Subsequently, coffee husks were used for the extraction of lignin using an alkaline treatment. As a result, lignin microparticles were formed with a relatively uniform size of 0.55 ± 0.11 mm. Altogether, the current article provided useful data for the valorization of coffee husks and the primary properties of lignin microparticles for further use.
Project description:BackgroundEthanol organosolv (EOS) pretreatment is one of the most efficient methods for boosting biomass saccharification as it can achieve an efficient fractionation of three major constituents in lignocellulose. However, lignin repolymerization often occurs in acid EOS pretreatment, which impairs subsequent enzymatic hydrolysis. This study investigated acid EOS pretreatment assisted by carbocation scavenger (2-naphthol, 2-naphthol-7-sulfonate, mannitol and syringic acid) to improve biomass fractionation, coproduction of fermentable sugars and lignin adsorbents. In addition, surface barrier effect of lignin on cellulose hydrolysis was isolated from unproductive binding effect of lignin, and the analyses of surface chemistry, surface morphology and surface area were carried out to reveal the lignin inhibition mitigating effect of various additives.ResultsFour different additives all helped mitigate lignin inhibition on cellulose hydrolysis in particular diminishing surface barrier effect, among which 2-naphthol-7-sulfonate showed the best performance in improving pretreatment efficacy, while mannitol and syringic acid could serve as novel green additives. Through the addition of 2-naphthol-7-sulfonate, selective lignin removal was increased up to 76%, while cellulose hydrolysis yield was improved by 85%. As a result, 35.78 kg cellulose and 16.63 kg hemicellulose from 100 kg poplar could be released and recovered as fermentable sugars, corresponding to a sugar yield of 78%. Moreover, 22.56 kg ethanol organosolv lignin and 17.53 kg enzymatic hydrolysis residue could be recovered as lignin adsorbents for textile dye removal, with the adsorption capacities of 45.87 and 103.09 mg g-1, respectively.ConclusionsResults in this work indicated proper additives could give rise to the form of less repolymerized surface lignin, which would decrease the unproductive binding of cellulase enzymes to surface lignin. Besides, the supplementation of additives (NS, MT and SA) resulted in a simultaneously increased surface area and decreased lignin coverage. All these factors contributed to the diminished surface barrier effect of lignin, thereby improving the ease of enzymatic hydrolysis of cellulose. The biorefinery process based on acidic EOS pretreatment assisted by carbocation scavenger was proved to enable the coproduction of fermentable sugars and lignin adsorbents, allowing the holistic utilization of lignocellulosic biomass for a sustainable biorefinery.
Project description:Lignin from different biomasses possess biological antioxidation and antimicrobial activities, which depend on the number of functional groups and the molecular weight of lignin. In this work, organosolv fractionation was carried out to prepare the lignin fraction with a suitable structure to tailor excellent biological activities. Gel permeation chromatography (GPC) analysis showed that decreased molecular weight lignin fractions were obtained by sequentially organosolv fractionation with anhydrous acetone, 50% acetone and 37.5% hexanes. Nuclear magnetic resonance (NMR) results indicated that the lignin fractions with lower molecular weight had fewer substructures and a higher phenolic hydroxyl content, which was positively correlated with their antioxidation ability. Both of the original lignin and fractionated lignins possessed the ability to inhibit the growth of Gram-negative bacteria (Escherichia coli and Salmonella) and Gram-positive bacteria (Streptococcus and Staphylococcus aureus) by destroying the cell wall of bacteria in vitro, in which the lignin fraction with the lowest molecular weight and highest phenolic hydroxyl content (L3) showed the best performance. Besides, the L3 lignin showed the ability to ameliorate Escherichia coli-induced diarrhea damages of mice to improve the formation of intestinal contents in vivo. These results imply that a lignin fraction with a tailored structure from bamboo lignin can be used as a novel antimicrobial agent in the biomedical field.
Project description:Porous carbon has been widely used for many applications e.g., adsorbents, catalysts, catalyst supports, energy storage and gas storage due to its outstanding properties. In this paper, characteristics of porous carbon prepared by carbonization of lignin from various biomasses are presented. Various biomasses, i.e., mangosteen peel, corncob and coconut shell, were processed using ethanol as an organosolv solvent. The obtained lignin was characterized using a Fourier transform infrared (FTIR) spectrophotometer and a viscosimeter to investigate the success of extraction and lignin properties. The results showed that high temperature is favorable for the extraction of lignin using the organosolv process. The FTIR spectra show the success of lignin extraction using the organosolv process because of its similarity to the standard lignin spectra. The carbonization process of lignin was performed at 600 and 850 °C to produce carbon from lignin, as well as to investigate the effect of temperature. A higher pyrolysis temperature will produce a porous carbon with a high specific surface area, but it will lower the yield of the produced carbon. At 850 °C temperature, the highest surface area up to 974 m2/g was achieved.