Project description:The dog roundworm Toxocara canis (Nematoda: Toxocaridae) is an important zoonotic parasitic nematode and cause toxocariasis in human with a worldwide distribution. Herein, the complete mitochondrial genome of a representative of this nematode from USA was determined through next generation sequencing platform. The whole genome was 14,309 bp in size and encoded 12 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs. Phylogeny showed that although T. canis from USA and Australia were more closely related to each other than to that from Chinese, three T. canis isolates clustered together and formed paraphyletic relationships with T. cati and T. malayensis, supporting them as sister species among the family Toxocaridae. These cumulative mitochondrial DNA data should contribute to a better understanding of the phylogenetic relationship of this species.
Project description:Toxascaris leonina (Nematoda, Ascarididae) is a cosmopolitan nematode of canids and felids and poses potential threats to public health due to aberrant larva migrans. Herein, the complete mitochondrial genome sequence of a representative of this nematode from the dog in China was determined using next-generation sequencing technology. The assembled genome was 14,357 bp in length and encoded 36 genes, including 12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs. The phylogeny revealed that the canid-originated T. leonina were phylogenetic distinctiveness from the felid-originated T. leonina within the genus Toxascaris of Ascarididae, supporting that T. leonina may represent a species complex.
Project description:The Ascaris roundworms (Ascaridida: Nematoda), one of the commonest soil-transmitted helminths (STHs), can cause ascariasis with significant socioeconomic and public health impact. In this study, the mitochondrial genome of Ascaris ovis, a representative of this genus from the sheep in Southwest China was determined using Illumina sequencing technology. The assembled genome was 14,205 bp in size and encoded 36 genes, including 12 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes. Phylogenetic analysis showed that A. ovis grouped with the congeneric Ascaris lumbricoides of humans, Ascaris spp. of non-human primates and Ascaris suum of pigs and together formed a monophyletic group relationship with either species of Baylisascaris/Toxascaris/Parascaris, species of Toxocara, species of Anisakis/Pseudoterranova or species of Ascaridia/Heterakis in the order Ascaridida, supporting its genetic similarity with A. lumbricoides, A. suum, and other congeneric species. The cumulative mitochondrial DNA data of this genus should contribute to a better understanding of the phylogenetic relationships among these roundworms.
Project description:BackgroundHistomonosis is a severe re-emerging disease of poultry caused by Histomonas meleagridis, a protozoan parasite which survives in the environment via the cecal worm Heterakis gallinarum. Following infection, the parasites reside in the ceca and are excreted via host feces. In the present work, male birds of conventional broiler (Ross 308, R), layer (Lohmann Brown Plus, LB) and a dual-purpose (Lohmann Dual, LD) chicken line were infected with 250 embryonated eggs of Ascaridia galli and Heterakis gallinarum, respectively, with the latter nematode harboring Histomonas meleagridis, to investigate a co-infection of nematodes with the protozoan parasite in different host lines.MethodsIn weekly intervals, from 2 to 9 weeks post infection (wpi), individual fecal samples (n = 234) from the chickens were collected to quantify the excretion of H. meleagridis by real-time PCR and to determine the number of nematode eggs per gram (EPG) in order to elucidate excretion dynamics of the flagellate and the nematodes. This was further investigated by indirect detection using plasma samples of the birds to detect antibodies specific for H. meleagridis and worms by ELISA. The infection with H. meleagridis was confirmed by histopathology and immunohistochemistry to detect the flagellate in the cecum of representing birds.ResultsThe excretion of H. meleagridis could already be observed from the 2nd wpi in some birds and increased to 100% in the last week of the experiment in all groups independent of the genetic line. This increase could be confirmed by ELISA, even though the number of excreted H. meleagridis per bird was generally low. Overall, histomonads were detected in 60% to 78% of birds with temporary differences between the different genetic lines, which also showed variations in the EPG and worm burden of both nematodes.ConclusionsThe infection with H. gallinarum eggs contaminated with H. meleagridis led to a permanent excretion of the flagellate in host feces. Differences in the excretion of H. meleagridis in the feces of genetically different host lines occurred intermittently. The excretion of the protozoan or its vector H. gallinarum was mostly exclusive, showing a negative interaction between the two parasites in the same host.
Project description:Onchocerca lupi, Rodonaja 1967, is an emerging, zoonotic filarial nematode parasite that causes ocular disease in dogs, cats, wild canids, and humans. It is the causative agent of ocular onchocercosis in canines with increasing incidence in both North America and the Old World during the early twenty-first century. We report the complete mitochondrial genome of an O. lupi isolate from a dog from Arizona, southwestern USA, and its genetic differentiation from related Onchocerca species. The whole mitochondrial genome was obtained from whole genome sequencing of genomic DNA isolated from an adult worm. This mitogenome is 13,766 bp in size and contains 36 genes and a control region. This mitogenome provides a valuable resource for future studies involving epidemiological surveillance, population genetics, phylogeography, and comparative mitogenomics of this emerging pathogen and other parasitic nematodes.
Project description:Chicken mitochondrial DNA is a circular molecule comprising ~16.8 kb. In this study, we used next-generation sequencing to investigate mitochondrial heteroplasmy in the whole chicken mitochondrial genome. Based on heteroplasmic detection thresholds at the 0.5% level, 178 cases of heteroplasmy were identified in the chicken mitochondrial genome, where 83% were due to nucleotide transitions. D-loop regionwas hot spot region for mtDNA heteroplasmy in the chicken since 130 cases of heteroplasmy were located in these regions. Heteroplasmy varied among intraindividual tissues with allele-specific, position-specific, and tissue-specific features. Skeletal muscle had the highest abundance of heteroplasmy. Cases of heteroplasmy at mt.G8682A and mt.G16121A were validated by PCR-restriction fragment length polymorphism analysis, which showed that both had low ratios of heteroplasmy occurrence in five natural breeds. Polymorphic sites were easy to distinguish. Based on NGS data for crureus tissues, mitochondrial mutation/heteroplasmy exhibited clear maternal inheritance features at the whole mitochondrial genomic level. Further investigations of the heterogeneity of the mt.A5694T and mt.T5718G transitions between generations using pyrosequencing based on pedigree information indicated that the degree of heteroplasmy and the occurrence ratio of heteroplasmy decreased greatly from the F0 to F1 generations in the mt.A5694T and mt.T5718G site. Thus, the intergenerational transmission of heteroplasmy in chicken mtDNA exhibited a rapid shift toward homoplasmy within a single generation. Our findings indicate that heteroplasmy is a widespread phenomenon in chicken mitochondrial genome, in which most sites exhibit low heteroplasmy and the allele frequency at heteroplasmic sites changes significantly during transmission events. It suggests that heteroplasmy may be under negative selection to some degree in the chicken.
Project description:We analyzed the nuclear ribosomal internal transcribed spacer (ITS) 1 and ITS2 sequences for Bangladesh isolates of Ascaridia galli, and we determined that the sequences were unreliable as molecular markers for distinguishing A. galli from other Ascaridia species, because the sequences showed high identity with that of A. columbae. However, the ITS1 sequences were available for designing PCR primers distinguishable between Ascaridia galli and Heterakis spp. Bangladesh isolates of A. galli constituted a monophyletic clade along with other geographical isolates in the cytochrome c oxidase subunit I (COI) phylogenetic tree, however, we could not clarify the phylogenetic relationships between A. galli and other Ascaridia spp., because their available sequences in GenBank were very few. The developed PCR method using DNA from A. galli and Heterakis spp. eggs would enable differential diagnosis of the individual infections in the future.
Project description:The complete mitochondrial (mt) genome of Trichuris skrjabini has been determined in the current study and subsequently compared with closely related species by phylogenetic analysis based on concatenated datasets of mt amino acid sequences. The whole mt genome of T. skrjabini is circular and 14,011 bp in length. It consists of a total of 37 genes including 13 protein coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNAs) genes, and two non-coding regions. The gene arrangement and contents were consistent with other members of the Trichuridae family including Trichuris suis, Trichuris trichiura, Trichuris ovis, and Trichuris discolor. Phylogenetic analysis based on concatenated datasets of amino acids of the 12 PCGs predicted the distinctiveness of Trichuris skrjabini as compared to other members of the Trichuridae family. Overall, our study supports the hypothesis that T. skrjabini is a distinct species. The provision of molecular data of whole mt genome of T. skrjabini delivers novel genetic markers for future studies of diagnostics, systematics, population genetics, and molecular epidemiology of T. skrjabini.
Project description:The Luhua chicken is one of the excellent Chinese local chicken breeds. The first complete mitochondrial genome of Luhua chicken was assembled by using next generation sequencing method. The complete mitogenome contains one control region, 2 ribosomal RNAs, 13 protein-coding genes and 22 transfer RNA genes. This work provides a valuable resource for the mitochondrial research and contributes to genetic improvement of domestic chicken.
Project description:Partridge Shank chicken is a valuable broiler breed in China. The first complete mitochondrial DNA (mtDNA) sequence of Partridge Shank chicken had been obtained using PCR amplification, sequencing and assembling. The complete mitochondrial genome was 16,788 bp in length, with the base composition of 30.2% for A, 23.7% for T, 32.5% for C and 13.5% for G. It exhibited the typical mitochondrial structure, including 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes, and a non-coding control region (D-loop region). The phylogenetic tree construced with maximum-likelihood (ML) method based on the complete chicken mitochondrial genomes showed that the 26 chicken breeds could be divided into two groups.