Project description:Autonomous laboratories can accelerate discoveries in chemical synthesis, but this requires automated measurements coupled with reliable decision-making1,2. Most autonomous laboratories involve bespoke automated equipment3-6, and reaction outcomes are often assessed using a single, hard-wired characterization technique7. Any decision-making algorithms8 must then operate using this narrow range of characterization data9,10. By contrast, manual experiments tend to draw on a wider range of instruments to characterize reaction products, and decisions are rarely taken based on one measurement alone. Here we show that a synthesis laboratory can be integrated into an autonomous laboratory by using mobile robots11-13 that operate equipment and make decisions in a human-like way. Our modular workflow combines mobile robots, an automated synthesis platform, a liquid chromatography-mass spectrometer and a benchtop nuclear magnetic resonance spectrometer. This allows robots to share existing laboratory equipment with human researchers without monopolizing it or requiring extensive redesign. A heuristic decision-maker processes the orthogonal measurement data, selecting successful reactions to take forward and automatically checking the reproducibility of any screening hits. We exemplify this approach in the three areas of structural diversification chemistry, supramolecular host-guest chemistry and photochemical synthesis. This strategy is particularly suited to exploratory chemistry that can yield multiple potential products, as for supramolecular assemblies, where we also extend the method to an autonomous function assay by evaluating host-guest binding properties.
Project description:The research of robotic autonomous radioactivity detection or radioactive source search plays an important role in the monitoring and disposal of nuclear safety and biological safety. In this paper, a method for autonomously searching for radioactive sources through mobile robots was proposed. In the method, by using a partially observable Markov decision process (POMDP), the search of autonomous unknown radioactive sources was realized according to a series of radiation information measured by mobile robot. First, the factors affecting the accuracy of radiation measurement during the robot's movement were analyzed. Based on these factors, the behavior set of POMDP was designed. Secondly, the parameters of the radioactive source were estimated in the Bayesian framework. In addition, through the reward strategy, autonomous navigation of the robot to the position of the radiation source was achieved. The search algorithm was simulated and tested, and the TurtleBot robot platform was used to conduct a real search experiment on the radio source Cs-137 with an activity of 37 MBq indoors. The experimental results showed the effectiveness of the method. Additionally, from the experiments, it could been seen that the robot was affected by the linear velocity, angular velocity, positioning accuracy and the number of measurements in the process of autonomous search for the radioactive source. The proposed mobile robot autonomous search method can be applied to the search for lost radioactive sources, as well as for the leakage of substances (nuclear or chemical) in nuclear power plants and chemical plants.
Project description:The ability to recognize the surface type is crucial for both indoor and outdoor mobile robots. Knowing the surface type can help indoor mobile robots move more safely and adjust their movement accordingly. However, recognizing surface characteristics is challenging since similar planes can appear substantially different; for instance, carpets come in various types and colors. To address this inherent uncertainty in vision-based surface classification, this study first generates a new, unique data set composed of 2,081 surface images (carpet, tiles, and wood) captured in different indoor environments. Secondly, the pre-trained state-of-the-art deep learning models, namely InceptionV3, VGG16, VGG19, ResNet50, Xception, InceptionResNetV2, and MobileNetV2, were utilized to recognize the surface type. Additionally, a lightweight MobileNetV2-modified model was proposed for surface classification. The proposed model has approximately four times fewer total parameters than the original MobileNetV2 model, reducing the size of the trained model weights from 42 MB to 11 MB. Thus, the proposed model can be used in robotic systems with limited computational capacity and embedded systems. Lastly, several optimizers, such as SGD, RMSProp, Adam, Adadelta, Adamax, Adagrad, and Nadam, are applied to distinguish the most efficient network. Experimental results demonstrate that the proposed model outperforms all other applied methods and existing approaches in the literature by achieving 99.52% accuracy and an average score of 99.66% in precision, recall, and F1-score. In addition to this, the proposed lightweight model was tested in real-time on a mobile robot in 11 scenarios consisting of various indoor environments such as offices, hallways, and homes, resulting in an accuracy of 99.25%. Finally, each model was evaluated in terms of model loading time and processing time. The proposed model requires less loading and processing time than the other models.
Project description:This paper addressed a scheduling problem which handles urgent tasks along with existing schedules. The uncertainties in this problem come from random process of existing schedules and unknown upcoming urgent tasks. To deal with the uncertainties, this paper proposes a stochastic integer programming (SIP) based aggregated online scheduling method. The method is illustrated through a study case from the outpatient clinic block-wise scheduling system which is under a hybrid scheduling policy combining regular far-in-advance policy and the open-access policy. The COVID-19 pandemic brings more challenges for the healthcare system including the fluctuations of service time and increasing urgent requests which this paper is designed for. The schedule framework designed in the method is comprehensive to accommodate various uncertainties in the healthcare service system, such as: no-shows, cancellations and punctuality of patients as well as preference of patients over time slots and physicians. Supplementary Information The online version contains supplementary material available at 10.1007/s43069-021-00089-6.
Project description:In this paper we examine the factors contributing to the emergence of leadership in a group, and we explore the relationship between the role of the leader and the behavioural capabilities of other individuals. We use a simulation technique where a group of foraging robots must coordinate to choose between two identical food zones in order to forage collectively. Behavioural and quantitative analysis indicate that a form of leadership emerges, and that groups with a leader are more effective than groups without. Moreover, we show that the most skilled individuals in a group tend to be the ones that assume a leadership role, supporting biological findings. Further analysis reveals the emergence of different "styles" of leadership (active and passive).
Project description:Pneumatic soft robots are promising in diverse applications while they typically require additional electronics or components for pressure control. Fusing pneumatic actuation and control capabilities into a simple soft module remains challenging. Here, we present a class of bistable fabric mechanisms (BFMs) that merge soft bistable actuators and valves for electronics-free autonomous robots. The BFMs comprise two bonding fabric chambers with embedded tubes, where the straightening of one chamber compels the other to buckle for the bistability of the structure and the switching of the tube kinking. Our BFMs can facilitate fast bending actuation (more than 1166° s-1), on/off and continuous pressure regulation, pneumatic logic computations, and autonomous oscillating actuation (up to 4.6 Hz). We further demonstrate the capabilities of BFMs for diverse robotic applications powered by one constant-pressure air supply: a soft gripper for dynamic grasping and a soft crawler for autonomous jumping. Our BFM development showcases unique features and huge potential in advancing entirely soft, electronics-free autonomous robots.
Project description:This paper adds on to the on-going efforts to provide more autonomy to space robots and introduces the concept of programming by demonstration or imitation learning for trajectory planning of manipulators on free-floating spacecraft. A redundant 7-DoF robotic arm is mounted on small spacecraft dedicated for debris removal, on-orbit servicing and assembly, autonomous and rendezvous docking. The motion of robot (or manipulator) arm induces reaction forces on the spacecraft and hence its attitude changes prompting the Attitude Determination and Control System (ADCS) to take large corrective action. The method introduced here is capable of finding the trajectory that minimizes the attitudinal changes thereby reducing the load on ADCS. One of the critical elements in spacecraft trajectory planning and control is the power consumption. The approach introduced in this work carry out trajectory learning offline by collecting data from demonstrations and encoding it as a probabilistic distribution of trajectories. The learned trajectory distribution can be used for planning in previously unseen situations by conditioning the probabilistic distribution. Hence almost no power is required for computations after deployment. Sampling from a conditioned distribution provides several possible trajectories from the same start to goal state. To determine the trajectory that minimizes attitudinal changes, a cost term is defined and the trajectory which minimizes this cost is considered the optimal one.
Project description:Outpatient Chemotherapy Appointment (OCA) planning and scheduling is a process of distributing appointments to available days and times to be handled by various resources through a multi-stage process. Proper OCAs planning and scheduling results in minimizing the length of stay of patients and staff overtime. The integrated consideration of the available capacity, resources planning, scheduling policy, drug preparation requirements, and resources-to-patients assignment can improve the Outpatient Chemotherapy Process's (OCP's) overall performance due to interdependencies. However, developing a comprehensive and stochastic decision support system in the OCP environment is complex. Thus, the multi-stages of OCP, stochastic durations, probability of uncertain events occurrence, patterns of patient arrivals, acuity levels of nurses, demand variety, and complex patient pathways are rarely addressed together. Therefore, this paper proposes a clustering and stochastic optimization methodology to handle the various challenges of OCA planning and scheduling. A Stochastic Discrete Simulation-Based Multi-Objective Optimization (SDSMO) model is developed and linked to clustering algorithms using an iterative sequential approach. The experimental results indicate the positive effect of clustering similar appointments on the performance measures and the computational time. The developed cluster-based stochastic optimization approaches showed superior performance compared with baseline and sequencing heuristics using data from a real Outpatient Chemotherapy Center (OCC).
Project description:Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Project description:In previous experiments, a back-off movement was introduced as a motion strategy of robots to facilitate the order of passage at bottlenecks in human-robot spatial interaction. In this article we take a closer look at the appropriate application of motion parameters that make the backward movement legible. Related works in distance perception, size-speed illusions, and viewpoint-based legibility considerations suggest a relationship between the size of the robot and the observer's perspective on the expected execution of this movement. We performed a participant experiment (N = 50) in a virtual reality environment where participants adjusted the minimum required back-off length and preferred back-off speed as a result of the robot size, and the viewpoint of the back-off movement. We target a model-based approach on how appropriate back-off design translates to different sized robots and observer's viewpoints. Thus, we allow the application of back-off in a variety of autonomous moving systems. The results show a significant correlation between the increasingly expected back-off lengths with increasing robot size, but only weak effects of the viewpoint on the requirements of this movement. An exploratory analysis suggests that execution time might be a promising parameter to consider for the design of legible motion.