Unknown

Dataset Information

0

Automated machine learning for genome wide association studies.


ABSTRACT:

Motivation

Genome-wide association studies (GWAS) present several computational and statistical challenges for their data analysis, including knowledge discovery, interpretability, and translation to clinical practice.

Results

We develop, apply, and comparatively evaluate an automated machine learning (AutoML) approach, customized for genomic data that delivers reliable predictive and diagnostic models, the set of genetic variants that are important for predictions (called a biosignature), and an estimate of the out-of-sample predictive power. This AutoML approach discovers variants with higher predictive performance compared to standard GWAS methods, computes an individual risk prediction score, generalizes to new, unseen data, is shown to better differentiate causal variants from other highly correlated variants, and enhances knowledge discovery and interpretability by reporting multiple equivalent biosignatures.

Availability and implementation

Code for this study is available at: https://github.com/mensxmachina/autoML-GWAS. JADBio offers a free version at: https://jadbio.com/sign-up/. SNP data can be downloaded from the EGA repository (https://ega-archive.org/). PRS data are found at: https://www.aicrowd.com/challenges/opensnp-height-prediction. Simulation data to study population structure can be found at: https://easygwas.ethz.ch/data/public/dataset/view/1/.

SUBMITTER: Lakiotaki K 

PROVIDER: S-EPMC10562960 | biostudies-literature | 2023 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Automated machine learning for genome wide association studies.

Lakiotaki Kleanthi K   Papadovasilakis Zaharias Z   Lagani Vincenzo V   Fafalios Stefanos S   Charonyktakis Paulos P   Tsagris Michail M   Tsamardinos Ioannis I  

Bioinformatics (Oxford, England) 20230901 9


<h4>Motivation</h4>Genome-wide association studies (GWAS) present several computational and statistical challenges for their data analysis, including knowledge discovery, interpretability, and translation to clinical practice.<h4>Results</h4>We develop, apply, and comparatively evaluate an automated machine learning (AutoML) approach, customized for genomic data that delivers reliable predictive and diagnostic models, the set of genetic variants that are important for predictions (called a biosi  ...[more]

Similar Datasets

| S-EPMC5007749 | biostudies-other
| S-EPMC11623107 | biostudies-literature
| S-EPMC9426533 | biostudies-literature
| S-EPMC7900884 | biostudies-literature
| S-EPMC6659642 | biostudies-literature
| S-EPMC5125008 | biostudies-literature
| S-EPMC9141736 | biostudies-literature
| S-EPMC5358742 | biostudies-literature
| S-EPMC6567636 | biostudies-literature
| S-EPMC8647880 | biostudies-literature