Project description:Multiple myeloma (MM) is a plasma cell disorder typically characterized by abundant synthesis of clonal immunoglobulin or free light chains. Although incurable, a deeper understanding of MM pathobiology has fueled major therapeutical advances over the past two decades, significantly improving patient outcomes. Proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies are among the most effective anti-MM drugs, targeting not only the cancerous cells, but also the bone marrow microenvironment. However, de novo resistance has been reported, and acquired resistance is inevitable for most patients over time, leading to relapsed/refractory disease and poor outcomes. Sustained protein synthesis coupled with impaired/insufficient proteolytic mechanisms makes MM cells exquisitely sensitive to perturbations in protein homeostasis, offering us the opportunity to target this intrinsic vulnerability for therapeutic purposes. This review highlights the scientific rationale for the clinical use of FDA-approved and investigational agents targeting protein homeostasis in MM.
Project description:MDM2 has been established as a biomarker indicating poor prognosis for individuals undergoing immune checkpoint inhibitor (ICI) treatment for different malignancies by various pancancer studies. Specifically, patients who have MDM2 amplification are vulnerable to the development of hyperprogressive disease (HPD) following anticancer immunotherapy, resulting in marked deleterious effects on survival rates. The mechanism of MDM2 involves its role as an oncogene during the development of malignancy, and MDM2 can promote both metastasis and tumor cell proliferation, which indirectly leads to disease progression. Moreover, MDM2 is vitally involved in modifying the tumor immune microenvironment (TIME) as well as in influencing immune cells, eventually facilitating immune evasion and tolerance. Encouragingly, various MDM2 inhibitors have exhibited efficacy in relieving the TIME suppression caused by MDM2. These results demonstrate the prospects for breakthroughs in combination therapy using MDM2 inhibitors and anticancer immunotherapy.
Project description:Nearly without exception, all known cancer chemotherapeutics elicit a resistance response over time. The resulting resistance is correlated with poor clinical outcomes. Here, we report an approach to overcoming resistance through reprogramming oncogene-directed alterations in mitochondrial metabolism before drug activation while simultaneously circumventing drug efflux pumps. Conjugate C1 increases cancer cell apoptosis and inhibits regrowth of drug-resistant tumors, as inferred from efficacy studies carried out in human cancer cells and in Dox-resistant xenograft tumor models. It also displays minimal whole-animal toxicity. These benefits are ascribed to an ability to evade chemoresistance by switching cancer cell metabolism back to normal mitochondrial oxidative phosphorylation while helping target the active Dox to first the mitochondrion and then the nucleus.
Project description:Over sixty percent of all mammalian protein-coding genes are estimated to be regulated by microRNAs (miRNAs), and unsurprisingly miRNA dysregulation has been linked with cancer. Aberrant miRNA expression in cancer cells has been linked with tumourigenesis and drug resistance. In the past decade, increasing number of studies have demonstrated that cholesterol accumulation fuels tumour growth and contributes to drug resistance, therefore, miRNAs controlling cholesterol metabolism and homeostasis are obvious hypothetical targets for investigating their role in cholesterol-mediated drug resistance in cancer. In this review, we have collated published evidences to consolidate this hypothesis and have scrutinized it by utilizing computational tools to explore the role of miRNAs in cholesterol-mediated drug resistance in breast cancer cells. We found that hsa-miR-128 and hsa-miR-223 regulate genes mediating lipid signalling and cholesterol metabolism, cancer drug resistance and breast cancer genes. The analysis demonstrates that targeting these miRNAs in cancer cells presents an opportunity for developing new strategies to combat anticancer drug resistance.
Project description:Multidrug resistance (MDR) has been considered as a huge challenge to the effective chemotherapy. Therefore, it is necessary to develop new strategies to effectively overcome MDR. Here, based on the previous research of N-(2-hydroxypropyl)methacrylamide (HPMA) polymer-drug conjugates, we designed an effective system that combined drug-efflux circumvention and mitochondria targeting of anticancer drug doxorubicin (Dox). Briefly, Dox was modified with mitochondrial membrane penetrating peptide (MPP) and then attached to (HPMA) copolymers (P-M-Dox). Our study showed that macromolecular HPMA copolymers successfully bypassed drug efflux pumps and escorted Dox into resistant MCF-7/ADR cells via endocytic pathway. Subsequently, the mitochondria accumulation of drugs was significantly enhanced with 11.6-fold increase by MPP modification. The excellent mitochondria targeting then resulted in significant enhancement of reactive oxygen species (ROS) as well as reduction of adenosine triphosphate (ATP) production, which could further inhibit drug efflux and resistant cancer cell growth. By reversing Dox resistance, P-M-Dox achieved much better suppression in the growth of 3D MCF-7/ADR tumor spheroids compared with free Dox. Hence, our study provides a promising approach to treat drug-resistant cancer through simultaneous drug efflux circumvention and direct mitochondria delivery.
Project description:The "Warburg effect" consists of a metabolic shift in energy production from oxidative phosphorylation to glycolysis. The continuous activation of glycolysis in cancer cells causes rapid energy production and an increase in lactate, leading to the acidification of the tumour microenvironment, chemo- and radioresistance, as well as poor patient survival. Nevertheless, the mitochondrial metabolism can be also involved in aggressive cancer characteristics. The metabolic differences between cancer and normal tissues can be considered the Achilles heel of cancer, offering a strategy for new therapies. One of the main causes of treatment resistance consists of the increased expression of efflux pumps, and multidrug resistance (MDR) proteins, which are able to export chemotherapeutics out of the cell. Cells expressing MDR proteins require ATP to mediate the efflux of their drug substrates. Thus, inhibition of the main energy-producing pathways in cancer cells, not only induces cancer cell death per se, but also overcomes multidrug resistance. Given that most anticancer drugs do not have the ability to distinguish normal cells from cancer cells, a number of drug delivery systems have been developed. These nanodrug delivery systems provide flexible and effective methods to overcome MDR by facilitating cellular uptake, increasing drug accumulation, reducing drug efflux, improving targeted drug delivery, co-administering synergistic agents, and increasing the half-life of drugs in circulation.
Project description:P-glycoprotein (P-gp) is a drug transporter that effluxes chemotherapeutic drugs and is implicated in the development of resistance of cancer cells to chemotherapeutic drugs. To date, no drug has been approved to inhibit P-gp and restore chemotherapy efficacy. Moreover, majority of the reported inhibitors have high molecular weight and complex structures, making it difficult to understand the basic structural requirement for P-gp inhibition. In this study, two structurally simple, low molecular weight piperine analogs Pip1 and Pip2 were designed and found to better interact with P-gp than piperine in silico. A one step, acid-amine coupling reaction between piperic acid and 6,7-dimethoxytetrahydroisoquinoline or 2-(3,4-dimethoxyphenyl)ethylamine afforded Pip1 and Pip2, respectively. In vitro testing in drug resistant P-gp overexpressing KB (cervical) and SW480 (colon) cancer cells showed that both analogs, when co-administered with vincristine, colchicine or paclitaxel were able to reverse the resistance. Moreover, accumulation of P-gp substrate (rhodamine 123) in the resistant cells, a result of alteration of the P-gp efflux, was also observed. These investigations suggest that the natural product analog - Pip1 ((2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1 H)-yl)penta-2,4-dien-1-one) - is superior to piperine and could inhibit P-gp function. Further studies are required to explore the full potential of Pip1 in treating drug resistant cancer.
Project description:The resistance of tumors against anticancer drugs is a major impediment for chemotherapy. Tumors often develop multidrug resistance as a result of the cellular efflux of chemotherapeutic agents by ABC transporters such as P-glycoprotein (ABCB1/P-gp), Multidrug Resistance Protein 1 (ABCC1/MRP1), or Breast Cancer Resistance Protein (ABCG2/BCRP). By screening a chemolibrary comprising 140 compounds, we identified a set of naturally occurring aurones inducing higher cytotoxicity against P-gp-overexpressing multidrug-resistant (MDR) cells versus sensitive (parental, non-P-gp-overexpressing) cells. Follow-up studies conducted with the P-gp inhibitor tariquidar indicated that the MDR-selective toxicity of azaaurones is not mediated by P-gp. Azaaurone analogs possessing pronounced effects were then designed and synthesized. The knowledge gained from structure-activity relationships will pave the way for the design of a new class of anticancer drugs selectively targeting multidrug-resistant cancer cells.
Project description:MITF (microphthalmia-associated transcription factor) is a frequently amplified lineage-specific oncogene in human melanoma, whose role in intrinsic drug resistance has not been systematically investigated. Utilizing chemical inhibitors for major signaling pathways/cellular processes, we witness MITF as an elicitor of intrinsic drug resistance. To search kinase(s) targets able to bypass MITF-conferred drug resistance, we employed a multi-kinase inhibitor-directed chemical proteomics-based differential affinity screen in human melanocytes carrying ectopic MITF overexpression. A subsequent methodical interrogation informed mitotic Ser/Thr kinase Aurora Kinase A (AURKA) as a crucial regulator of melanoma cell proliferation and migration, independent of the underlying molecular alterations, including TP53 functional status and MITF levels. Crucially, assessing the efficacy of investigational AURKA inhibitor MLN8237, we pre-emptively witness the procurement of a molecular program consistent with acquired drug resistance. This involved induction of multiple MAPK (mitogen-activated protein kinase) signaling pathway components and their downstream proliferation effectors (Cyclin D1 and c-JUN) and apoptotic regulators (MITF and Bcl-2). A concomitant AURKA/BRAF and AURKA/MEK targeting overcame MAPK signaling activation-associated resistance signature in BRAF- and NRAS-mutated melanomas, respectively, and elicited heightened anti-proliferative activity and apoptotic cell death. These findings reveal a previously unreported MAPK signaling-mediated mechanism of immediate resistance to AURKA inhibitors. These findings could bear significant implications for the application and the success of anti-AURKA approaches that have already entered phase-II clinical trials for human melanoma.
Project description:One of the major obstacles to successful chemotherapy is multi-drug resistance (MDR). A multi-drug resistant cancerous cell abnormally overexpresses membrane transporters that pump anticancer drugs out of the cell, resulting in low anticancer drug delivery efficiency. To overcome the limitation, many attempts have been performed to inhibit the abilities of efflux receptors chemically or genetically or to increase the delivery efficiency of anticancer drugs. However, the results have not yet been satisfactory. In this study, we developed nanoparticle-microbubble complexes (DOX-NPs/Ce6-MBs) by conjugating doxorubicin loaded human serum albumin nanoparticles (DOX-NPs) onto the surface of Chlorin e6 encapsulated microbubbles (Ce6-MBs) in order to maximize anticancer efficiency by overcoming MDR. Under the ultrasound irradiation, DOX-NPs and Ce6 encapsulating self-assembled liposomes or micelles were effectively delivered into the cells due to the sonoporation effect caused by the microbubble cavitation. At the same time, reactive oxygen (ROS) generated from intracellularly delivered Ce6 by laser irradiation arrested the activity of ABCG2 efflux receptor overexpressed in doxorubicin-resistant breast cancer cells (MCF-7/ADR), resulting in increased the chemotherapy efficacy. In addition, the total number of side population cells that exhibit the properties of cancer stem-like cells were also reduced by the combination of photodynamic therapy and chemotherapy. In conclusion, DOX-NPs/Ce6-MBs will provide a platform for simultaneously overcoming MDR and increasing drug delivery and therefore, treatment efficiency, under ultrasound irradiation.