Project description:Stress is one of the leading causes of male infertility, but its exact function in testosterone synthesis has scarcely been reported. We found that adult male rats show a decrease in bodyweight, genital index and serum testosterone level after continual chronic stress for 21 days. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-MS analysis identified 10 differentially expressed proteins in stressed rats compared with controls. A strong protein interaction network was found to be centred on Atp5a1 among these proteins. Atp5a1 expression significantly decreased in Leydig cells after chronic stress. Transfection of Atp5a1 siRNAs decreased StAR, CYP11A1, and 17β-HSD expression by damaging the structure of mitochondria in TM3 cells. This study confirmed that chronic stress plays an important role in testosterone synthesis by regulating Atp5a1 expression in Leydig cells.
Project description:Emerging epidemiological studies indicate that hypercholesterolaemia is a risk factor for testosterone deficiency. However, the underlying mechanism is unclear. Testicular Leydig cells are the primary source of testosterone in males. To identify the effect and mechanism of cholesterol overload on Leydig cell function, rats were fed with a HC (HC) diet to induce hypercholesterolaemia. During the 16-week feeding period, serum testosterone levels were reduced in a time-dependent manner in rats fed the HC diet. Accordingly, these steroidogenic enzymes within the Leydig cells, including steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage cytochrome P450 (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD), were down-regulated. Notably, the HC-fed rats showed evident endoplasmic reticulum (ER) stress in the testis, including a dilated ER as an evident pathological change in the Leydig cell ultrastructure, up-regulated ER stress biomarker (binding immunoglobulin protein) levels and activation of the activating transcription factor 6 (ATF6)-related unfolded protein response pathway. Further analysis showed that when 4-phenyl butyric acid (4-PBA) was used to block ER stress in HC-fed rats for 8 weeks, the testosterone deficiency was significantly alleviated. Our findings suggested that high dietary cholesterol intake affected serum testosterone levels by down-regulating steroidogenic enzymes and that activated ER stress might serve as the underlying mechanism.
Project description:We investigated somatic cell dynamics in testicular tissue lacking spermatogenesis using model mice with testis-specific deletion of the histone H3 variant gene H3t. Leydig cells in testes lacking spermatogenesis led to increased testosterone synthesis that occurred alongside a high inflammatory response and oxidative stress.
Project description:We investigated somatic cell dynamics in testicular tissue lacking spermatogenesis using model mice with testis-specific deletion of the histone H3 variant gene H3t. Leydig cells in testes lacking spermatogenesis led to increased testosterone synthesis that occurred alongside a high inflammatory response and oxidative stress.
Project description:Testosterone is indispensable for sexual development and maintaining male characteristics, and deficiency of this hormone results in primary or late-onset hypogonadism (LOH). Testosterone is primarily produced in Leydig cells, where autophagy has been reported to be extremely active. However, the functional role of autophagy in testosterone synthesis remains unknown. In this study, we show that steroidogenic cell-specific disruption of autophagy influenced the sexual behavior of aging male mice because of a reduction in serum testosterone, which is similar to the symptoms of LOH. The decline in testosterone was caused mainly by a defect in cholesterol uptake in autophagy-deficient Leydig cells. Further studies revealed that once autophagic flux was disrupted, Na+/H+ exchanger regulatory factor 2 (NHERF2) accumulated in Leydig cells, resulting in the down-regulation of scavenger receptor class B, type I (SR-BI) and eventually leading to insufficient cholesterol supply. Collectively, these results reveal that autophagy promotes cholesterol uptake into Leydig cells by eliminating NHERF2, suggesting that dysfunction of autophagy might be causal in the loss of testosterone production in some patients.
Project description:Abnormal lipid/lipoprotein metabolism induced by obesity may affect spermatogenesis by inhibiting testosterone synthesis in Leydig cells. It is crucial to determine which components of lipoproteins inhibit testosterone synthesis. Circulating oxidized low-density lipoprotein (oxLDL), the oxidized form of LDL, has been reported to be an independent risk factor for decreased serum testosterone levels. However, whether oxLDL has a damaging effect on Leydig cell function and the detailed mechanisms have been rarely studied. This study first showed the specific localization of oxLDL and mitochondrial structural damage in testicular Leydig cells of high-fat diet-fed mice in vivo. We also found that oxLDL reduced the mitochondrial membrane potential (MMP) by disrupting electron transport chain and inhibited testosterone synthesis-related proteins and enzymes (StAR, P450scc, and 3β‑HSD), which ultimately led to mitochondrial dysfunction and decreased testosterone synthesis in Leydig cells. Further experiments demonstrated that oxLDL promoted lipid uptake and mitochondrial dysfunction by inducing CD36 transcription. Meanwhile, oxLDL facilitated COX2 expression through the p38 MAPK signaling pathway in Leydig cells. Blockade of COX-2 attenuated the oxLDL-induced decrease in StAR and P450scc. Our clinical results clarified that the increased serum oxLDL level was associated with a decline in circulating testosterone levels. Our findings amplify the damaging effects of oxLDL and provide the first evidence that oxLDL is a novel metabolic biomarker of male-acquired hypogonadism caused by abnormal lipid metabolism.
Project description:Testosterone replacement therapy has benefits for aging men and those with hypogonadism. However, the effects of exogenous testosterone on Leydig cells are still unclear and need to be clarified. In this report, we demonstrate that testosterone supplementation can reduce oxidative damage in Leydig cells. The TM3 Leydig cell line was used as an in vitro cell model in this study. Cytoprotective effects were identified with 100-nmol l⁻¹ testosterone treatment, but cytotoxic effects were found with ≥ 500-nmol l⁻¹ testosterone supplementation. Significantly reduced reactive oxygen species (ROS) generation, lipid peroxide contents and hypoxia induction factor (HIF)-1α stabilization and activation were found with 100-nmol l⁻¹ testosterone treatment. There was a 1.72-fold increase in ROS generation in the 500-nmol l⁻¹ compared to the 100-nmol l⁻¹ testosterone treatment. A 1.58-fold increase in steroidogenic acute regulatory protein (StAR) expression was found in 50-nmol l⁻¹ testosterone-treated cells (P < 0.01). Chemically induced hypoxia was attenuated by testosterone supplementation. Leydig cells treated with low-dose testosterone supplementation showed cytoprotection by decreasing ROS and lipid peroxides, increasing StAR expression and relieving hypoxia stress as demonstrated by HIF-1α stabilization. Increased oxidative damage was found with ≥ 500-nmol l⁻¹ testosterone manipulation. The mechanism governing the differential dose effects of testosterone on Leydig cells needs further investigation in order to shed light on testosterone replacement therapy.
Project description:BackgroundSoybean oil is a very common edible oil in daily life. With the changes in the dietary composition, the intake of soybean oil increased. However, the effects of dietary intake of soybean oil on testosterone production are still unclear.MethodsIn order to study the effects of increasing intake of soybean oil on the synthesis of testosterone in Leydig cells, we fed male C57BL/6 mice on the diet which added 20% soybean salad oil (SOY group). We detected the hormone levels by enzyme-linked immunosorbent assay (ELISA) kits and serum fatty acid composition by gas chromatography, and analyzed the expression of steroidogenic enzymes by Real-Time PCR or immunoblotting analysis.ResultsAfter the 16-week feeding period, serum linoleic acid (LA) and α-linolenic acid (ALA) significantly increased and serum palmitic acid (PA) significantly decreased in SOY group mice. Compared to the normal diet (ND group), increasing intake of soybean oil raised the luteinizing hormone (LH) levels and up-regulated luteinizing hormone/chorionic gonadotropin receptor (LHCGR), steroidogenic acute regulatory protein (StAR) and cytochrome P450 family 11 subfamily A member I (CYP11A1). Testosterone levels in SOY group were higher than that in the ND group, and significantly difference showed.ConclusionsIncreasing intake of soybean oil could raise the serum LA and ALA levels and decrease serum PA levels. This could activate the LH/LHCGR pathway and improve the function of steroid synthesis in Leydig cells, and finally lead to the elevated testosterone levels.
Project description:Male fertility disorders play a key role in half of all infertility cases. Reduction in testosterone induced by hypoxia might cause diseases in reproductive system and other organs. Hypoxic exposure caused a significant decrease of NRF1. Software analysis reported that the promoter region of steroidogenic acute regulatory protein (StAR) contained NRF1 binding sites, indicating NRF1 promoted testicular steroidogenesis. The purpose of this study is to determine NRF1 is involved in testosterone synthesis; and under hypoxia, the decrease of testosterone synthesis is caused by lower expression of NRF1. We designed both in vivo and in vitro experiments. Under hypoxia, the expressions of NRF1 in Leydig cells and testosterone level were significantly decreased both in vivo and in vitro. Overexpression and interference NRF1 could induced StAR and testosterone increased and decreased respectively. ChIP results confirmed the binding of NRF1 to StAR promoter region. In conclusion, decline of NRF1 expression downregulated the level of StAR, which ultimately resulted in a reduction in testosterone synthesis.
Project description:As a cis-acting non-depolarizing neuromuscular blocker through a nicotinic acetylcholine receptor (nAChR), cisatracurium (CAC) is widely used in anaesthesia and intensive care units. nAChR may be present on Leydig cells to mediate the action of CAC. Here, by Western blotting, immunohistochemistry and immunofluorescence, we identified that CHRNA4 (a subunit of nAChR) exists only on rat adult Leydig cells. We studied the effect of CAC on the synthesis of testosterone in rat adult Leydig cells and mouse MLTC-1 tumour cells. Rat Leydig cells and MLTC-1 cells were treated with CAC (5, 10 and 50 μmol/L) or nAChR agonists (50 μmol/L nicotine or 50 μmol/L lobeline) for 12 hours, respectively. We found that CAC significantly increased testosterone output in rat Leydig cells and mouse MLTC-1 cells at 5 μmol/L and higher concentrations. However, nicotine and lobeline inhibited testosterone synthesis. CAC increased intracellular cAMP levels, and nicotine and lobeline reversed this change in rat Leydig cells. CAC may increase testosterone synthesis in rat Leydig cells and mouse MLTC-1 cells by up-regulating the expression of Lhcgr and Star. Up-regulation of Scarb1 and Hsd3b1 expression by CAC was also observed in rat Leydig cells. In addition to cAMP signal transduction, CAC can induce ERK1/2 phosphorylation in rat Leydig cells. In conclusion, CAC binds to nAChR on Leydig cells, and activates cAMP and ERK1/2 phosphorylation, thereby up-regulating the expression of key genes and proteins in the steroidogenic cascade, resulting in increased testosterone synthesis in Leydig cells.