Project description:BackgroundCoronavirus disease 2019 (COVID-19) was first detected in patients with pneumonia in December 2019 in China and it spread rapidly to the rest of the world becoming a global pandemic. Several observational studies have reported that cancer is a risk factor for COVID-19. On the other hand, ACE2, a receptor for the SARS-CoV-2 virus, was found to be aberrantly expressed in many tumors. However, the characterization of aberrant ACE2 expression in malignant tumors has not been elucidated. Here, we conducted a systematic analysis of the ACE2 expression profile across 31 types of tumors.MethodsDistribution of ACE2 expression was analyzed using the GTEx, CCLE, TCGA pan-cancer databases. We evaluated the effect of ACE2 on clinical prognosis using the Kaplan-Meier survival plot and COX regression analysis. Correlation between ACE2 and immune infiltration levels was investigated in various cancer types. Additionally, the correlation between ACE2 and immune neoantigen, TMB, microsatellite instability, Mismatch Repair Genes (MMRs), HLA gene members, and DNA Methyltransferase (DNMT) was investigated. The frequency of ACE2 gene mutation in various tumors was analyzed. Functional enrichment analysis was conducted in various cancer types using the GSEA method.ResultsIn normal tissues, ACE2 was highly expressed in almost all 31 organs tested. In cancer cell lines, the expression level of ACE2 was low to medium. Although aberrant expression was observed in most cancer types, high expression of ACE2 was not linked to OS, DFS, RFS, and DFI in most tumors in TCGA pan-cancer data. We found that ACE2 expression was significantly correlated with the infiltrating levels of macrophages and dendritic cells, CD4+ T cells, CD8+ T cells, and B cells in multiple tumors. A positive correlation between ACE2 expression and immune neoantigen, TMB, and microsatellite instability was found in multiple cancers. GSEA analysis which was carried out to determine the effect of ACE2 on tumors indicated that several cancer-associated pathways and immune-related pathways were hyperactivated in the high ACE2 expression group of most tumors.ConclusionThese findings suggest that ACE2 is not correlated with prognosis in most cancer types. However, elevated ACE2 is significantly correlated with immune infiltrating levels, including those of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs in multiple cancers, especially in lung and breast cancer patients. These findings suggest that ACE2 may affect the tumor environment in cancer patients with COVID-19.
Project description:Background: The role of alcohol in carcinogenesis has received increasing attention in recent years. Evidence shows its impacts on various aspects, including epigenetics alteration. The DNA methylation patterns underlying alcohol-associated cancers are not fully understood. Methods: We investigated the aberrant DNA methylation patterns in four alcohol-associated cancers based on the Illumina HumanMethylation450 BeadChip. Pearson coefficient correlations were identified between differential methylated CpG probes and annotated genes. Transcriptional factor motifs were enriched and clustered using MEME Suite, and a regulatory network was constructed. Results: In each cancer, differential methylated probes (DMPs) were identified, and 172 hypermethylated and 21 hypomethylated pan-cancer DMPs (PDMPs) were examined further. Annotated genes significantly regulated by PDMPs were investigated and enriched in transcriptional misregulation in cancers. The CpG island chr19:58220189-58220517 was hypermethylated in all four cancers and silenced in the transcription factor ZNF154. Various biological effects were exerted by 33 hypermethylated and seven hypomethylated transcriptional factor motifs grouped into five clusters. Eleven pan-cancer DMPs were identified to be associated with clinical outcomes in the four alcohol-associated cancers, which might provide a potential point of view for clinical outcome prediction. Conclusion: This study provides an integrated insight into DNA methylation patterns in alcohol-associated cancers and reveals the corresponding features, influences, and potential mechanisms.
Project description:The landscape of CDC20 gene expression and its biological impacts across different types of cancers remains largely unknown. Here, a pan-cancer analysis was performed to analyze the role of Cdc20 in various human cancers. Our results indicated that the expression levels of the CDC20 gene were significantly elevated in bladder cancer, breast cancer, colon cancer, rectum cancer, stomach cancer, esophageal cancer, head and neck cancer, kidney cancer, liver cancer, lung cancer, prostate cancer, pancreatic cancer, and uterine cancer. In addition, the expression of CDC20 was significantly and positively correlated with the increase of clinical stages in multiple cancer types, including breast cancer, kidney cancer, and lung cancer, et al. Among 33 cancer subtypes in the TCGA dataset, the high expression of CDC20 was correlated with poor prognosis in 10 cancer types. Furthermore, the abundance of phosphorylated Cdc20 in the primary tumor was elevated and correlated with increased tumor grade. Next, we sought to elucidate the oncogenic role by analyzing its association with immune infiltration. For most cancer types, the CDC20 expression was positively correlated with the infiltration of cancer-associated fibroblasts and myeloid-derived suppressor cells. To further understand its functional activity, we explored the classic Cdc20 downstream substrates, which were found to be mutually exclusive with the expression of Cdc20. Moreover, the pan-cancer analysis of the molecular function of Cdc20 indicated that BUB1, CCNA2, CCNB1, CDK1, MAD2L1, and PLK1 might play a critical role in interaction with Cdc20. The abundance of Cdc20 was further validated at transcriptional and translational levels with a publicly available dataset and clinical tumor tissues. The knockdown of Cdc20 dramatically inhibited tumor growth both in vivo and in vitro. Therefore, our studies delineated the oncogenic role of CDC20 and its prognostic significance at the pan-cancer level and proved its functional activity in Cdc20 high expression cancer types. Our studies will merits further molecular assays to understand the potential role of Cdc20 in tumorigenesis and provide the rationale for developing novel therapeutic strategies.
Project description:BackgroundC-X-C chemokine receptor 4 (CXCR4) is a specific receptor of stromal cell-derived factor-1, also known as CXCL12. The interaction between CXCL12 and its receptor CXCR4 can activate various signaling pathways, including gene expression, cell proliferation, migration, tumorigenesis, angiogenesis, etc. Although there is evidence to support the association between CXCR4 and some cancers, there is no pan-cancer analysis. To fill this gap, we analyzed the role of CXCR4 in cancer-based on The Cancer Genome Atlas (TCGA).MethodsWe used TCGA, Genotype-Tissue Expression (GTEx) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases to analyze the expression, variation and phosphorylation of CXCR4 in different cancers. At the same time, we also carried out Kyoto Encyclopedia of Genes (KEGG) and Gene Ontology (GO) enrichment analysis.ResultsWe found that CXCR4 expression was significantly increased in bladder urothelial carcinoma (BLCA) and other cancers, and CXCR4 expression in BLCA, cervical squamous cell carcinoma (CESC) and other cancers was related to tumor stage. CXCR4 expression was positively correlated with tumor-associated fibroblasts in BLCA, breast adenocarcinoma (BRCA), CESC and other cancers. GO analysis showed that CXCR4-related genes were mainly enriched in biological processes (BPs) and cellular components (CCs). KEGG analysis showed that CXCR4 was mainly involved in "chemokine signaling pathway", "natural killer cell-mediated cytotoxicity", and "JAK-STAT signaling pathway".ConclusionsThe expression of CXCR4 in different cancers has different effects on the prognosis of patients and the infiltration of immune cells.
Project description:TNFAIP8L1, as a recently identified member in TNFAIP8 family, plays an important role in tumorigenesis. However, a pan-cancer analysis of TNFAIP8L1 in human tumors has not been conducted until now. The main purpose of study is to investigate TNFAIP8L1 during 33 different types of human tumors by using TCGA and GTEx. The pan-cancer analysis showed that TNFAIP8L1 was significantly over-expressed in 15 cancers and low-expressed in 9 cancers. There were distinct relations between TNFAIP8L1 expression and prognosis of patients with cancer. Furthermore, we also found that DNA methylation and RNA modification of TNFAIP8L1 were associated with many cancers. And then, we detected that TNFAIP8L1 level was positively associated with cancer-associated fibroblasts (CAFs) in many tumors. And, we obtained that TNFAIP8L1 expression was related with most of immune inhibitory and stimulatory genes in multiple types of tumors. We also found TNFAIP8L1 expression was correlated with most of chemokine, receptor, MHC, immunoinhibitor and immunostimulator gens in most of cancers. Moreover, we detected TNFAIP8L1 expression was associated with TMB and MSI in several tumors. Finally, TNFAIP8L1 gene had a significant positive association with 5 genes including BCL6B, DLL4, PCDH12, COL4A1 and DLL4 in the majority of tumors. GO enrichment and KEGG pathway analyses showed that TNFAIP8L1 in thepathogenesis of cancer may be related to "purine nucleoside binding," "purine ribonucleoside binding," "ECM-receptor interaction," etc. Our first pan-cancer study may provide a deep comprehending of TNFAIP8L1 in tumoeigenesis from different tumors.
Project description:BackgroundENOPH1 (Enolase-phosphatase 1), a member of the HAD-like hydrolase superfamily, has been linked to a range of physiological conditions, including neurological disorders. However, its involvement in tumorigenesis remains underexplored. This study is the first to conduct a pan-cancer analysis of ENOPH1, aiming to elucidate its role in multiple cancers through various bioinformatics platforms.MethodsWe conducted a thorough analysis using data from UCSC databases. ENOPH1 expression in tumor and normal tissues was evaluated using R language software. Survival analyses, genetic alterations, and RNA modifications were assessed through the GEPIA2 and cBioPortal platforms. The relationships between ENOPH1 and immune infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), and homologous recombination deficiency (HRD) were examined using TIMER2 and R software. ENOPH1-related gene enrichment analysis was performed using the STRING and GEPIA2 databases, followed by Gene Ontology (GO) and KEGG pathway enrichment analyses.ResultsENOPH1 expression was significantly upregulated in various cancers, including ACC, BLCA, BRCA, and COAD. High ENOPH1 expression was associated with poor overall survival (OS) in cancers such as KICH, LIHC, BRCA and LUAD. High ENOPH1 expression was associated with poor disease specific survival (DSS) in cancers such as KICH, LIHC, BRCA and MESO. Genetic alterations of ENOPH1, primarily mutations and deep deletions, were identified in UCEC, BLCA, and OV. ENOPH1 showed significant correlations with RNA modifications (m1A, m5C, m6A), immune checkpoints, and immune modulators across multiple cancer types. ENOPH1 was positively correlated with TMB, MSI, and HRD in cancers like BLCA, BRCA, and STAD. Furthermore, enrichment analysis revealed that ENOPH1 interacts with proteins involved in critical pathways such as AMPK, Hippo, and PI3K-AKT, suggesting its role in cancer progression.ConclusionThis pan-cancer analysis reveals ENOPH1's potential as a prognostic biomarker and its involvement in key signaling pathways across multiple cancers. Our findings provide new insights into the role of ENOPH1 in tumorigenesis and highlight its potential as a therapeutic target in cancer treatment.
Project description:IntroductionThe TOR signaling pathway regulator-like (TIPRL) gene plays a multifaceted role in cancer, yet its pan-cancer profile remains underexplored. This study investigates TIPRL expression across multiple cancers and its associations with survival, genetic alterations, immune infiltration, and functional pathways, providing insights into TIPRL's role as a potential prognostic and therapeutic target.MethodsTIPRL expression and prognostic significance across tumor types were analyzed using TCGA_GTEx and CPTAC data in R software and platforms like GEPIA2 and UALCAN. Genetic alterations and 3D structures were evaluated through cBioPortal. Associations with RNA modifications, immune checkpoints, immune cell infiltration, TMB, MSI, HRD, and enriched pathways were assessed via R and STRING databases, employing survival analysis, ssGSEA, and enrichment analyses.ResultsTIPRL expression was elevated in most cancers, with significant stage-specific associations observed in KICH, KIRP, and LUSC. High TIPRL expression correlated with worse overall survival in ACC, BRCA, HNSC, KICH, LIHC, and MESO, suggesting its role in prognosis. Genetic analysis identified amplifications as the main alteration, with varied clinical relevance across cancers. RNA modifications in TIPRL, particularly m1A, m5C, and m6A, suggested potential regulatory mechanisms. Immune infiltration analysis revealed TIPRL's varied correlations with immune cell types and immune scores, differing by cancer type. TIPRL also positively correlated with TMB, MSI, and HRD in several cancers, indicating its association with genomic instability. Enrichment analyses highlighted TIPRL's involvement in processes like oxidative phosphorylation and autophagy, underscoring its influence in tumorigenesis.ConclusionThese findings establish TIPRL as a significant biomarker in cancer progression and immune regulation, warranting further exploration into its therapeutic implications across diverse tumor types.
Project description:Tumor heterogeneity presents challenges for personalized diagnosis and treatment of cancer. The identification method of cancer-specific biomarkers has important applications for the diagnosis and treatment of cancer types. In this study, we analyzed the pan-cancer DNA methylation data from TCGA and GEO, and proposed a computational method to quantify the degree of specificity based on the level of DNA methylation of G protein-coupled receptor-related genes (GPCRs-related genes) and to identify specific GPCRs DNA methylation biomarkers (GRSDMs) in pan-cancer. Then, a ridge regression-based method was used to discover potential drugs through predicting the drug sensitivities of cancer samples. Finally, we predicted and verified 8 GRSDMs in adrenocortical carcinoma (ACC), rectum adenocarcinoma (READ), uveal Melanoma (UVM), thyroid carcinoma (THCA), and predicted 4 GRSDMs (F2RL3, DGKB, GRK5, PIK3R6) which were sensitive to 12 potential drugs. Our research provided a novel approach for the personalized diagnosis of cancer and informed individualized treatment decisions.
Project description:FAT atypical cadherin 1 (FAT1) is one of the most mutagenic genes in tumors, and several critical studies have revealed its role in tumors, although no pan-cancer studies are currently available. Therefore, we explored the potential oncogenic role of FAT1 in 33 tumors based on The Cancer Genome Atlas and Gene Expression Omibus datasets. We found that FAT1 was strongly expressed in most tumors and significantly correlated with their prognosis. Additionally, we analyzed the association of FAT1 with tumors from multiple perspectives, including single-cell sequencing, mutations, high tumor mutational burden, microsatellite instability, immune cell infiltration, and immune microenvironment. Our first pan-cancer study provided a relatively comprehensive understanding of the oncogenic role of FAT1 in tumors.