Project description:The predatory stink bug P. Lewisi shows potential for Integrated Pest Management programs for controlling Lepidoptera pest insects in crops and forests. The importance of this insect for biological control has stimulated several studies into its biology and ecology. However, P. lewisi has little genetic information available. In the present study, PacBio single-molecule real-time (SMRT) sequencing and Illumina RNA-seq sequencing technologies were used to reveal the full-length transcriptome profiling and tissue-specific expression patterns of P. lewisi. A total of 12,997 high-quality transcripts with an average length of 2,292 bp were obtained from different stages of P. lewisi using SMRT sequencing. Among these, 12,101 were successfully annotated in seven public databases. A total of 67 genes of cytochrome P450 monooxygenases, 43 carboxylesterase genes, and 18 glutathione S-transferase genes were identified, most of which were obtained with full-length ORFs. Then, tissue-specific expression patterns of 5th instar nymphs were analyzed using Illumina sequencing. Several candidate genes related to detoxification of insecticides and other xenobiotics as well as the degradation of odors, were identified in the guts and antennae of P. lewisi. The current study offered in-depth knowledge to understand the biology and ecology of this beneficial predator and related species.
Project description:Abstract Background The predatory stink bug genus Picromerus Amyot & Serville, 1843 (Hemiptera, Heteroptera, Pentatomidae, Asopinae) comprises 11 species found in the Northern Hemisphere. In Japan, two species have been recorded to date. However, an easy-to-understand identification method, such as an illustrated key, is lacking. Currently, Picromerusgriseus (Dallas, 1851) has been recorded in Bangladesh, Bhutan, China, Indonesia, Myanmar, Pakistan and Taiwan, but not in Japan. New information Picromerusgriseus was recorded in Japan for the first time, based on a single individual collected from grasslands around the fields of Ishigaki Island of the Ryukyu Islands, which belong to the Oriental Region. This discovery represents the easternmost record of the species. An illustrated key to the species of Picromerus occurring in Japan is also provided.
Project description:Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest.
Project description:The brown marmorated stink bug, Halyomorpha halys, is an invasive, phytophagous stink bug of global importance for agriculture. Tissue-specific transcriptomic analysis of the accessory salivary gland, principal salivary gland (PSG) and gut resulted in identification of 234 putative protease and 166 putative nuclease sequences. By mapping the previously reported proteomes of H. halys watery saliva (WS) and sheath saliva to protein sequences translated from the assembled transcripts, 22 proteases and two nucleases in the saliva were identified. Of these, 19 proteases and both nucleases were present in the WS. The majority of proteases and nucleases found in WS were derived from the PSG, in line with ultrastructural observations, which suggest active protein synthesis and secretion by this tissue. The highly transcribed digestive proteases and nucleases of H. halys were similar to those of the southern green stink bug, Nezara viridula, indicating that these pentatomid stink bugs utilize a similar suite of proteases and nucleases for digestion of plant material. The comprehensive data set for the H. halys salivary glands and gut generated by this study provides an additional resource for further understanding of the biology of this pestiferous species.
Project description:The redbanded stink bug, Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), is a significant soybean pest in the Americas, which inflicts more physical damage on soybean than other native stink bugs. Studies suggest that its heightened impact is attributed to the aggressive digestive properties of its saliva. Despite its agricultural importance, the factors driving its greater ability to degrade plant tissues have remained unexplored in a genomic evolutionary context. In this study, we hypothesized that lineage-specific gene family expansions have increased the copy number of digestive genes expressed in the salivary glands. To investigate this, we annotated a previously published genome assembly of the redbanded stink bug, performed a comparative genomic analysis on 11 hemipteran species, and reconstructed patterns of gene duplication, gain, and loss in the redbanded stink bug. We also performed RNA-seq on the redbanded stink bug's salivary tissues, along with the rest of the body without salivary glands. We identified hundreds of differentially expressed salivary genes, including a subset lost in other stink bug lineages, but retained and expressed in the redbanded stink bug's salivary glands. These genes were significantly enriched with protein families involved in proteolysis, potentially explaining the redbanded stink bug's heightened damage to soybeans. Contrary to our hypothesis, we found no support for an enrichment of duplicated digestive genes that are also differentially expressed in the salivary glands of the redbanded stink bug. Nonetheless, these results provide insight into the evolution of this important crop pest, establishing a link between its genomic history and its agriculturally important physiology.
Project description:The predatory stink bug, Arma custos, is a highly effective beneficial predator of crop pests. The lack of gene information related to xenobiotic detoxification and odorant degrading enzymes in the predator stink bugs to date has limited our ability for more in-depth studies of biological control. Hence, we conducted de novo assembly of the A. custos transcriptome from guts, antennae, and other tiussue samples of 5th instar larvae using Illumina sequencing technology. A total of 91, 50 and 23 genes of cytochrome P450 monooxygenases (CYPs), carboxyl/choline esterases (CCEs) and glutathione S-transferases (GSTs) genes were identified, respectively. Gene expansions of CYP3 and CYP4 clans and the hormone and pheromone processing CCE class were found in A. custos. Analysis of tissue-specific expression patterns showed that 37 CYPs, 14 CCEs and 8 GSTs were enriched in guts, and 6 CYPs, 5 CCEs and 2 GSTs were up-regulated in antennae, suggesting their potential roles on xenobiotics detoxification and ordorant degradation. Gene information data presented here could be useful for a deeper understanding of the ecology, physiology and behavior of this beneficial species and could be helpful to improve their bio-control efficiency.
Project description:Picromerus lewisi Scott (Hemiptera: Pentatomidae) is a widely used natural enemy, through this study, we proved that its complete mitochondrial genome of it had similar characteristics to those of other Hemiptera. The mitogenome of P. lewisi is a circular molecule of 18,123 bp with 74.0% A + T content, containing 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and one control region. Phylogenetic tree based on 13 PCGs from 17 Panheteroptera species (two species of the Cimicomorpha are used as outgroup, 15 species belong to the Pentatomomorpha) suggested that P. lewisi has a closer relationship with E. thomsoni within Pentatomidae family.