Project description:A 76-year-old woman had received surgical mitral valve replacement with Magna Mitral Ease (Edwards Lifesciences, Irvine, CA, USA) 25 mm for functional severe mitral regurgitation 6 years previously. She presented recurrence of heart failure due to severe stenotic and moderate regurgitant degeneration of the implanted mitral bioprosthesis. Considering her comorbidities and left ventricular systolic dysfunction, our heart valve team eventually decided to perform percutaneous transseptal transcatheter mitral valve-in-valve replacement instead of surgical redo mitral valve replacement, using a 26 mm SAPIEN 3 valve (Edwards Lifesciences) via trans-femoral approach. Post-procedural course was uneventful and she was discharged on post-procedural day 2. This is, to the best of our knowledge, the first case of successful percutaneous transseptal transcatheter mitral valve-in-valve replacement in Japan. Further large-scale prospective studies are warranted to validate its long-term safety and efficacy, particularly by comparing with the redo surgery. <Learning objective: We experienced an off-label transseptal mitral valve-in-valve replacement using SAPIEN 3 to treat degenerative mitral bioprosthesis for the first time in Japan. Although further large-scale prospective studies are warranted, this procedure should be a promising therapeutic alternative to conventional redo-surgery, particularly for elderly patients with multiple comorbidities.>.
Project description:BackgroundA severe prosthesis-patient mismatch (PPM) is associated with adverse outcomes following transcatheter aortic valve replacement (TAVR) for de novo aortic stenosis or a failed surgical bioprosthesis. The impact of severe PPM in patients undergoing TAV-in-TAVR is unknown.AimWe sought to investigate the incidence and 1-year outcomes of different grades of PPM in patients undergoing TAV-in-TAVR.Materials and methodsThe TRANSIT-PPM is an international registry, including cases of degenerated TAVR treated with a second TAVR. PPM severity, as well as in-hospital, 30-day, and 1-year outcomes were defined according to the Valve Academic Research Consortium-3 (VARC-3) criteria.ResultsAmong 28 centers, 155 patients were included. Severe PPM was found in 6.5% of patients, whereas moderate PPM was found in 14.2% of patients. The rate of severe PPM was higher in patients who underwent TAV-in-TAVR with a second supra-annular self-expanding (S-SE) TAVR (10%, p = 0.04). Specifically, the rate of severe PPM was significantly higher among cases of a SE TAVR implanted into a balloon-expandable (BE) device (19%, p = 0.003). At 1-year follow-up, the rate of all-cause mortality, and the rate of patients in the New York Heart Association (NYHA) class III/IV were significantly higher in the cohort of patients with severe PPM (p = 0.016 and p = 0.0001, respectively). Almost all the patients with a severe PPM after the first TAVR had a failed < 23 mm BE transcatheter heart valve (THV): the treatment with an S-SE resolved the severe PPM in the majority of the cases.ConclusionAfter TAV-in-TAVR, in a fifth of the cases, a moderate or severe PPM occurred. A severe PPM is associated with an increased 1-year all-cause mortality.Clinical trial registration[https://clinicaltrials.gov], identifier [NCT04500964].
Project description:BackgroundAlthough transcatheter technology has achieved some success in the field of mitral valves, the feasibility of applying it to patients with degenerated mitral valve bioprostheses (valve-in-valve, ViV), failure of mitral valvuloplasty (valve-in-ring, ViR) and serious mitral annulus calcification (vale-in-MAC, ViMAC) has not been effectively evaluated.MethodsBy searching published literature before December 5, 2020 in four databases, we found all the literature related to the evaluation of feasibility assessment of TMViV, TMViR and TMViMAC. Outcomes focused on all-cause mortality within 30 days, bleeding and LVOT obstruction.ResultsA total of six studies were included, and all of them were followed up for at least 30 days. After analysis of the ViV-ViR group, we obtained the following results: the all-cause mortality within 30 days of the ViV group was lower than that of the ViR group. Life-threatening or fatal bleeding was more likely to occur in the ViR group after surgery. At the same time, the ViR group was more prone to left ventricular outflow tract obstruction. However, in the ViMAC-ViR group, only the all-cause mortality within 30 days and stroke were statistically significant. In the indirect comparison, we found that TMViV had the best applicability, followed by TMViR. There were few TMViMAC available for analysis, and it requires further studies to improve the accuracy of the results.ConclusionTMViV and TMViR had good applicability and could benefit patients who underwent repeat valve surgery. The feasibility of TMViMAC needs to be further explored and improved.
Project description:This review outlines the first trial experience with transcatheter therapy for mitral regurgitation (MR), developed from the EVEREST II MitraClip trial in a trial population comprised predominantly of patients with degenerative mitral regurgitation (DMR). Subsequent experience with MitraClip and several other devices has been mostly in functional MR patients. At the same time, there has been ongoing experience with MitraClip in DMR, and a variety of other devices have been developed for catheter-based treatment of MR. Annuloplasty devices have been indicated for DMR, and the potential for transcatheter annuloplasty to be used, in conjunction with other catheter techniques, such as chordal replacement, as it is in standard mitral repair, is developing. Transcatheter mitral valve replacement will clearly have some role for MR of both functional and degenerative etiologies, when repair is not feasible or fails. This review will discuss the evidence base and future development of these mitral repair and replacement approaches for DMR.
Project description:A 67-year-old male patient who had undergone double valve replacement 11 years before presented with severe dyspnea to our department. The bioprosthetic aortic and mitral valves have failed. Because of the high risk of redo surgery. We perform a simultaneous transapical transcatheter valve-in-valve replacement of degenerated aortic and mitral bioprosthetic valves with limited radiopaque landmarks using the second-generation self-expanding J-valve. The post-operative course was stable and the patient was discharged on post-operative day eight.
Project description:Patients undergoing transcatheter aortic valve replacement (TAVR) might have an associated significant MR that can potentially lead to left ventricular (LV) failure after procedure. Considering the specific alterations in the mitral valve in TAVR scenario and the widespread use of TAVR in recent years, it appears important to know and understand the anatomical, functional and clinical implications to develop adequate strategies for the future. Patients with severe mitral regurgitation (MR) have been generally excluded from randomized clinical trials, making poor the impact that associated MR can have on clinical outcomes after TAVR. Several factors must be considered whose presence influences the severity of MR. For example, the elevated prevalence of coronary disease with consequent ischemic MR may account for LV dilation observed at the end stage of aortic stenosis. Evidence randomized studies and registries suggests that the rate of concomitant moderate-to-severe MR in patients undergoing TAVR oscillates between 2% and 33%, and patients with moderate to severe MR may have hemodynamic frailty with clinical deterioration during mechanical intervention. Short- and long-term outcomes, including cardiac mortality, appear to be influenced by the existence of preoperative moderate-to-severe MR or by the postprocedural worsening of mild MR, generally due to adverse LV remodeling. The incidence and the prognostic effect of concomitant MR in patients undergoing TAVR requires specific attention as might trigger adjunctive strategy treatment which should be carefully evaluated in clinical trials.KeywordsMitral regurgitation (MR); mitral valve; transcatheter aortic valve; transcatheter aortic valve replacement (TAVR).