Unknown

Dataset Information

0

AI-assisted accelerated MRI of the ankle: clinical practice assessment.


ABSTRACT:

Background

High-spatial resolution magnetic resonance imaging (MRI) is essential for imaging ankle joints. However, the clinical application of fast spin-echo sequences remains limited by their lengthy acquisition time. Artificial intelligence-assisted compressed sensing (ACS) technology has been recently introduced as an integrative acceleration solution. We compared ACS-accelerated 3-T ankle MRI to conventional methods of compressed sensing (CS) and parallel imaging (PI) .

Methods

We prospectively included 2 healthy volunteers and 105 patients with ankle pain. ACS acceleration factors for ankle protocol of T1-, T2-, and proton density (PD)-weighted sequences were optimized in a pilot study on healthy volunteers (acceleration factor 3.2-3.3×). Images of patients acquired using ACS and conventional acceleration methods were compared in terms of acquisition times, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), subjective image quality, and diagnostic agreement. Shapiro-Wilk test, Cohen κ, intraclass correlation coefficient, and one-way ANOVA with post hoc tests (Tukey or Dunn) were used.

Results

ACS acceleration reduced the acquisition times of T1-, T2-, and PD-weighted sequences by 32-43%, compared with conventional CS and PI, while maintaining image quality (mostly higher SNR with p < 0.004 and higher CNR with p < 0.047). The diagnostic agreement between ACS and conventional sequences was rated excellent (κ = 1.00).

Conclusions

The optimum ACS acceleration factors for ankle MRI were found to be 3.2-3.3× protocol. The ACS allows faster imaging, yielding similar image quality and diagnostic performance.

Relevance statement

AI-assisted compressed sensing significantly accelerates ankle MRI times while preserving image quality and diagnostic precision, potentially expediting patient diagnoses and improving clinical workflows.

Key points

• AI-assisted compressed sensing (ACS) significantly reduced scan duration for ankle MRI. • Similar image quality achieved by ACS compared to conventional acceleration methods. • A high agreement by three acceleration methods in the diagnosis of ankle lesions was observed.

SUBMITTER: Zhao Q 

PROVIDER: S-EPMC10587051 | biostudies-literature | 2023 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

AI-assisted accelerated MRI of the ankle: clinical practice assessment.

Zhao Qiang Q   Xu Jiajia J   Yang Yu Xin YX   Yu Dan D   Zhao Yuqing Y   Wang Qizheng Q   Yuan Huishu H  

European radiology experimental 20231020 1


<h4>Background</h4>High-spatial resolution magnetic resonance imaging (MRI) is essential for imaging ankle joints. However, the clinical application of fast spin-echo sequences remains limited by their lengthy acquisition time. Artificial intelligence-assisted compressed sensing (ACS) technology has been recently introduced as an integrative acceleration solution. We compared ACS-accelerated 3-T ankle MRI to conventional methods of compressed sensing (CS) and parallel imaging (PI) .<h4>Methods</  ...[more]

Similar Datasets

| S-EPMC9755080 | biostudies-literature
| S-EPMC4608660 | biostudies-literature
| S-EPMC11359380 | biostudies-literature
| S-EPMC8696933 | biostudies-literature
| S-EPMC11541807 | biostudies-literature
| S-EPMC3431260 | biostudies-literature
| S-EPMC8634777 | biostudies-literature
| S-EPMC11738171 | biostudies-literature
| S-EPMC10105653 | biostudies-literature
| S-EPMC10646026 | biostudies-literature