Project description:BackgroundNewborn infant skin changes after birth but studies have focused on the epidermal barrier. Dermal properties are relevant for care, but literature on postnatal changes is sparse. We further characterized skin maturational changes in lightness, color and response to biomechanical stress.MethodsNormal skin sites from subsets of participants in a trial on the progression and stage of infantile hemangiomas were retrospectively examined. Standardized photographs were analyzed as L*, a*, and b* images. Biomechanics were measured with the Cutometer® .ResultsColor changed significantly with increasing age. Skin was darker and redder at 2.0 vs. 5.4, 8.5 and 12.8 months. Yellow color increased, with higher values at 12.8 vs. 2.0, 3.5 and 5.4 months. Chest tissue was consistently more elastic than arm and face sites, with significantly higher elasticity for the youngest and oldest age groups. Biological elasticity, elastic recovery, and total recovery were significantly greater for the oldest subjects. Viscoelasticity and elastic deformation were lower at 5.5 vs. 8.8 and 17.6 months. Arm viscoelastic creep was highest at 2.8 months.ConclusionSkin maturation continues into year two. Increasing elasticity and decreasing viscoelasticity may reflect increased collagen structure/function. The findings have implications for prevention of skin injury associated with mechanical forces.
Project description:An important question is how growing tissues establish a blood vessel network. Here we study vascular network formation in pancreatic islets, endocrine tissues derived from pancreatic epithelium. We find that depletion of integrin-linked kinase (ILK) in the pancreatic epithelial cells of mice results in glucose intolerance due to a loss of the intra-islet vasculature. In turn, blood vessels accumulate at the islet periphery. Neither alterations in endothelial cell proliferation, apoptosis, morphology, Vegfa expression and VEGF-A secretion nor 'empty sleeves' of vascular basement membrane are found. Instead, biophysical experiments reveal that the biomechanical properties of pancreatic islet cells, such as their actomyosin-mediated cortex tension and adhesive forces to endothelial cells, are significantly changed. These results suggest that a sorting event is driving the segregation of endothelial and epithelial cells and indicate that the epithelial biomechanical properties determine whether the blood vasculature invades or envelops a growing epithelial tissue.
Project description:The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties.
Project description:Articular cartilage undergoes structural and biochemical changes during maturation, but the knowledge on how these changes relate to articular cartilage function at different stages of maturation is lacking. Equine articular cartilage samples of four different maturation levels (newborn, 5-month-old, 11-month-old and adult) were collected (N = 25). Biomechanical tensile testing, Fourier transform infrared microspectroscopy (FTIR-MS) and polarized light microscopy were used to study the tensile, biochemical and structural properties of articular cartilage, respectively. The tensile modulus was highest and the breaking energy lowest in the newborn group. The collagen and the proteoglycan contents increased with age. The collagen orientation developed with age into an arcade-like orientation. The collagen content, proteoglycan content, and collagen orientation were important predictors of the tensile modulus (p < 0.05 in multivariable regression) and correlated significantly also with the breaking energy (p < 0.05 in multivariable regression). Partial least squares regression analysis of FTIR-MS data provided accurate predictions for the tensile modulus (r = 0.79) and the breaking energy (r = 0.65). To conclude, the composition and structure of equine articular cartilage undergoes changes with depth that alter functional properties during maturation, with the typical properties of mature tissue reached at the age of 5-11 months.
Project description:Cacti have a distinct adaptation to arid conditions with a massive water storing tissue surrounding a weak central woody cylinder. However, they have not been studied as extensively as other plants have been. Selenicereus undatus is a hemi-epiphytic root climber that attaches itself to supporting plants or rocks with adventitious roots. The anatomy and biomechanics of the adventitious roots were studied using light microscopy, X-ray tomography and pullout and uniaxial tensile tests. The central cylinder of the roots is highly lignified and is connected to the vascular system of the shoot in a peculiar way. Xylem elements of the root turn 90 degrees towards the base of the shoot and merge laterally and below the junction with those from the shoot. Tensile and pull-out tests showed that failure occurs either at the root or junction, with the fracture surface mainly comprising the area where xylem elements from the root merge with those from the shoot. However, damage to the cortical tissue was minimal, and the measured forces showed that adventitious roots have a high safety factor. Even a complete failure of the junction after pullout does not result in severe injury to the cortex, which could lead to water loss or the entry of pathogens.
Project description:Immune cells have intensely physical lifestyles characterized by structural plasticity and force exertion. To investigate whether specific immune functions require stereotyped mechanical outputs, we used super-resolution traction force microscopy to compare the immune synapses formed by cytotoxic T cells with contacts formed by other T cell subsets and by macrophages. T cell synapses were globally compressive, which was fundamentally different from the pulling and pinching associated with macrophage phagocytosis. Spectral decomposition of force exertion patterns from each cell type linked cytotoxicity to compressive strength, local protrusiveness, and the induction of complex, asymmetric topography. These features were validated as cytotoxic drivers by genetic disruption of cytoskeletal regulators, live imaging of synaptic secretion, and in silico analysis of interfacial distortion. Synapse architecture and force exertion were sensitive to target stiffness and size, suggesting that the mechanical potentiation of killing is biophysically adaptive. We conclude that cellular cytotoxicity and, by implication, other effector responses are supported by specialized patterns of efferent force.
Project description:BackgroundAnatomical location is considered in diagnostic and therapeutic approaches of cholangiocarcinoma (CCA). However, disparities and its extents in proportion of surgical candidates, prognostic factors, prognostic genetic networks, susceptibility for lymph node dissection, and disease stage at diagnosis remain to be confirmed.MethodsA total of 11,710 patients with cholangiocarcinoma from Surveillance, Epidemiology, and End Results Cancer Registries (SEER) and 45 CCA patients with paired tumor and normal specimens from The Cancer Genome Atlas were studied. Kaplan-Meier estimation, Cox proportional hazards regression, Pearson's correlation, comparison between anatomical location (distal, intrahepatic, and perihilar)-dependent CCAs, differential expressive gene stratification, potential interactive gene identification, and confirmation on pathways of the prognostic networks were carried out.ResultsSurvival outcomes were most favorable in the distal type, followed by perihilar and intrahepatic types, but postsurgical prognosis was slightly higher in intrahepatic type compared to perihilar type. Distant historic stage at diagnosis was noticed in intrahepatic type. Significant prognostic factors and their hazards ratios were dependent to the anatomical location. In addition, lymph node dissection provided significant survival benefits in perihilar type only. Furthermore, prognosis-predictive genes, as well as potential processes and pathways, were significantly among the anatomical location-dependent types that the genes barely overlapped.ConclusionsThere are disparities in almost all aspects among distal, intrahepatic, and perihilar CCAs. Anatomical location needs to be considered in treatment, prognostic estimation, identifying targets, and developing therapeutic approaches for CCA.
Project description:Posterolateral corner (PLC) injuries are complex knee injuries that are becoming increasingly frequent. Often undiagnosed and underestimated, a systematic diagnostic workup is necessary to assess the severity of PLC injury in order to then be able to select the proper surgery approach. Anatomical and nonanatomical PLC-reconstruction techniques have been described. In this Technical Note, we describe our technique of biomechanical reconstruction of PLC in case of severe posterolateral rotational instability.
Project description:In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion.