Project description:Invasive plants are sometimes considered to be more competitive than their native conspecifics, according to the prediction that the invader reallocates resources from defense to growth due to liberation of natural enemies ['Evolution of Increased Competitive Ability' (EICA) hypothesis]. However, the differences in competitive ability may depend on the identity of competitors. In order to test the effects of competitors, Ageratina adenophora plants from both native and invasive ranges competed directly, and competed with native residents from both invasive (China) and native (Mexico) ranges respectively. Invasive A. adenophora plants were more competitive than their conspecifics from native populations when competing with natives from China (interspecific competition), but not when competing with natives from Mexico. Invasive A. adenophora plants also showed higher competitive ability when grown in high-density monoculture communities of plants from the same population (intrapopulation competition). In contrast, invasive A. adenophora plants showed lower competitive ability when competing with plants from native populations (intraspecific competition). Our results indicated that in the invasive range A. adenophora has evolved to effectively cope with co-occurring natives and high density environments, contributing to invasion success. Here, we showed the significant effects of competitors, which should be considered carefully when testing the EICA hypothesis.
Project description:Globalization facilitated the spread of invasive alien species (IAS), undermining the stability of the world's ecosystems. We investigated the metabolomic profiles of three IAS species: Chromolaena odorata (Asteraceae) Datura stramonium (Solanaceae), and Xanthium strumarium (Asteraceae), comparing metabolites of individual plants in their native habitats (USA), to their invasive counterparts growing in and around Kruger National Park (South Africa, ZA). Metabolomic samples were collected using RApid Metabolome Extraction and Storage (RAMES) technology, which immobilizes phytochemicals on glass fiber disks, reducing compound degradation, allowing long-term, storage and simplifying biochemical analysis. Metabolomic differences were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) of samples eluted from RAMES disks. Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolomes of individual plants allowed statistical separation of species, native and invasive populations of each species, and some populations on the same continent. Invasive populations of all species were more phytochemically diverse than their native counterparts, and their metabolomic profiles were statistically distinguishable from their native relatives. These data may elucidate the mechanisms of successful invasion and rapid adaptive evolution of IAS. Moreover, RAMES technology combined with PLS-DA statistical analysis may allow taxonomic identification of species and, possibly, populations within each species.
Project description:BackgroundThe accuracy of predictions of invasive species ranges is dependent on niche similarity between invasive and native populations and on our ability to identify the niche characteristics. With this work we aimed to compare the niche dynamics of two genetically related invasive populations of Vespa velutina (an effective predator of honeybees and wild pollinators), in two distinct climatic regions, one in central Europe and another one in the north-western Iberian Peninsula, and hence to identify uninvaded regions susceptible to invasion.MethodsNiche dynamics and shifts of V. velutina were assessed by comparing the environmental niches of the native and of the two invasive populations, using climatic, topographic and land use variables. We also ran reciprocal distribution models using different algorithms and records from both native and invasive ranges to compare model predictions and estimate which regions are at a greater risk of being invaded.ResultsAn apparent niche shift was detected in the population of the NW of Iberian Peninsula, where the species is living under environmental conditions different from the native niche. In central Europe, large suitable areas remain unoccupied. The fact that both invasive populations are well established, despite occupying environmentally distinct regions indicates that V. velutina has a high ability to successfully invade different environmental envelopes from those existing in its native range. For example, in north-western Iberian Peninsula the species is now thriving out of its native niche limits. Moreover, the large extent of still unoccupied environmental space with similar conditions to those used by the species in its native range suggests that there is still a large area of central and eastern Europe that can be potentially invaded by the species.
Project description:Diet plasticity is a common behavior exhibited by piscivores to sustain predator biomass when preferred prey biomass is reduced. Invasive piscivore diet plasticity could complicate suppression success; thus, understanding invasive predator consumption is insightful to meeting conservation targets. Here, we determine if diet plasticity exists in an invasive apex piscivore and whether plasticity could influence native species recovery benchmarks and invasive species suppression goals. We compared diet and stable isotope signatures of invasive lake trout and native Yellowstone cutthroat trout (cutthroat trout) from Yellowstone Lake, Wyoming, U.S.A. as a function of no, low-, moderate-, and high-lake trout density states. Lake trout exhibited plasticity in relation to their density; consumption of cutthroat trout decreased 5-fold (diet proportion from 0.89 to 0.18) from low- to high-density state. During the high-density state, lake trout switched to amphipods, which were also consumed by cutthroat trout, resulting in high diet overlap (Schoener's index value, D = 0.68) between the species. As suppression reduced lake trout densities (moderate-density state), more cutthroat trout were consumed (proportion of cutthroat trout = 0.42), and diet overlap was released between the species (D = 0.30). A shift in lake trout δ13C signatures from the high- to the moderate-density state also corroborated increased consumption of cutthroat trout and lake trout diet plasticity. Observed declines in lake trout are not commensurate with expected cutthroat trout recovery due to lake trout diet plasticity. The abundance of the native species in need of conservation may take longer to recover due to the diet plasticity of the invasive species. The changes observed in diet, diet overlap, and isotopes associated with predator suppression provides more insight into conservation and suppression dynamics than using predator and prey biomass alone. By understanding these dynamics, we can better prepare conservation programs for potential feedbacks caused by invasive species suppression.
Project description:The Austral autumn-winter is a critical period for capital breeders such as Weddell seals that must optimize resource acquisition and storage to provision breeding in the subsequent spring. However, how Weddell seals find food in the winter months remains poorly documented. We equipped adult Weddell seals after their annual molt with satellite-relayed data loggers at two sites in East Antarctica: Dumont D'Urville (n = 12, DDU) and Davis (n = 20). We used binomial generalized mixed-effect models to investigate Weddell seals' behavioral response (i.e., "hunting" vs. "transit") to physical aspects of their environment (e.g., ice concentration). Weddell seal foraging was concentrated to within 5 km of a breathing hole, and they appear to move between holes as local food is depleted. There were regional differences in behavior so that seals at Davis traveled greater distances (three times more) and spent less time in hunting mode (half the time) than seals at DDU. Despite these differences, hunting dives at both locations were pelagic, concentrated in areas of high ice concentration, and over areas of complex bathymetry. There was also a seasonal change in diving behavior from transiting early in the season to more hunting during winter. Our observations suggest that Weddell seal foraging behavior is plastic and that they respond behaviorally to changes in their environment to maximize food acquisition and storage. Such plasticity is a hallmark of animals that live in very dynamic environments such as the high Antarctic where resources are unpredictable.
Project description:Invasive species pose a serious threat to native species. In Europe, invasive grey squirrels (Sciurus carolinensis) have replaced native red squirrels (Sciurus vulgaris) in locations across Britain, Ireland and Italy. The European pine marten (Martes martes) can reverse the replacement of red squirrels by grey squirrels, but the underlying mechanism of how pine martens suppress grey squirrels is little understood. Research suggests the reversal process is driven by direct predation, but why the native red squirrel may be less susceptible than the invasive grey squirrel to predation by a commonly shared native predator, is unknown. A behavioural difference may exist with the native sciurid being more effective at avoiding predation by the pine marten with which they have a shared evolutionary history. In mammals, olfactory cues are used by prey species to avoid predators. To test whether anti-predator responses differ between the native red squirrel and the invasive grey squirrel, we exposed both species to scent cues of a shared native predator and quantified the responses of the two squirrel species. Red squirrels responded to pine marten scent by avoiding the feeder, increasing their vigilance and decreasing their feeding activity. By contrast, grey squirrels did not show any anti-predator behaviours in response to the scent of pine marten. Thus, differences in behavioural responses to a shared native predator may assist in explaining differing outcomes of species interactions between native and invasive prey species depending on the presence, abundance and exposure to native predators.
Project description:The phenotypic plasticity hypothesis suggests that exotic plants may have greater phenotypic plasticity than native plants. However, whether phenotypic changes vary according to different environmental factors has not been well studied. We conducted a multi-species greenhouse experiment to study the responses of six different phenotypic traits, namely height, leaf number, specific leaf area, total biomass, root mass fraction, and leaf mass fraction, of native and invasive species to nutrients, water, and light. Each treatment was divided into two levels: high and low. In the nutrient addition experiment, only the leaf mass fraction and root mass fraction of the plants supported the phenotypic plasticity hypothesis. Then, none of the six traits supported the phenotypic plasticity hypothesis in the water or light treatment experiments. The results show that, for different environmental factors and phenotypes, the phenotypic plasticity hypothesis of plant invasion is inconsistent. When using the phenotypic plasticity hypothesis to explain plant invasion, variations in environmental factors and phenotypes should be considered.
Project description:Plants that grow in high density communities activate shade avoidance responses to consolidate light capture by individuals. Although this is an evolutionary successful strategy, it may not enhance performance of the community as a whole. Resources are invested in shade responses at the expense of other organs and light penetration through the canopy is increased, allowing invading competitors to grow better. Here we investigate if suppression of shade avoidance responses would enhance group performance of a monoculture community that is invaded by a competitor. Using different Arabidopsis genotypes, we show that suppression of shade-induced upward leaf movement in the pif7 mutant increases the pif7 communal performance against invaders as compared to a wild-type canopy. The invaders were more severely suppressed and the community grew larger as compared to wild type. Using computational modelling, we show that leaf angle variations indeed strongly affect light penetration and growth of competitors that invade the canopy. Our data thus show that modifying specific shade avoidance aspects can improve plant community performance. These insights may help to suppress weeds in crop stands.
Project description:BackgroundIntroduced species can modify local host-parasite dynamics by amplifying parasite infection which can 'spill-back' to the native fauna, whether they are competent hosts for local parasites, or by acting as parasite sinks with 'dilution' of infection decreasing the parasite burden of native hosts. Recently infection by the trematode Bucephalus polymorphus has increased in several European rivers, being attributed to the introduction of intermediate host species from the Ponto-Caspian region. Using a combination of field and experimental data, we evaluated the competence of non-native and native fish as intermediate hosts for B. polymorphus and its role for parasite development in a definitive host.MethodsThe density of 0+ juvenile fish (the second intermediate hosts for B. polymorphus) was measured in the River Morava, Czech Republic and fish were screened for natural metacercariae infection. The stomach contents of predatory fish that are definitive hosts of B. polymorphus were examined to assess the importance of non-native gobies for parasite transmission. In semi-natural conditions, parasite establishment, initial survival, and maturity rates in experimentally infected definitive hosts pikeperch Sander lucioperca were measured in flukes recovered from native white bream Abramis bjoerkna and non-native tubenose goby Proterorhinus semilunaris and round goby Neogobius melanostomus. Adult fluke size and egg production was also measured to evaluate the potential effect of intermediate host species on parasite fitness.ResultsWe detected high natural infection parameters of B. polymorphus in native cyprinids and non-native gobies compared to data from the period prior to goby establishment. Both fish groups are consumed by predatory fish and represent a major component of the littoral fish community. Parasite establishment and adult size in definitive hosts was equivalent among the second intermediate host species, despite a lower size of metacercariae recovered from round gobies. However, development in the definitive host of flukes recovered from gobies was reduced, showing higher mortality, delayed maturity and lower egg production, in comparison with parasites from native hosts.ConclusionsSubstantial 'spill-back' of B. polymorphus due to higher transmission rates after establishment of non-native gobies was partially buffered by decreased fitness of B. polymorphus that underwent development in gobies.
Project description:Most organisms face the problem of foraging and maintaining growth while avoiding predators. Typical animal responses to predator exposure include reduced feeding, elevated metabolism, and altered development rate, all of which can be beneficial in the presence of predators but detrimental in their absence. How then do animals balance growth and predator avoidance? In a series of field and greenhouse experiments, we document that the tobacco hornworm caterpillar, Manduca sexta, reduced feeding by 30-40% owing to the risk of predation by stink bugs, but developed more rapidly and gained the same mass as unthreatened caterpillars. Assimilation efficiency, extraction of nitrogen from food, and percent body lipid content all increased during the initial phase (1-3 d) of predation risk, indicating that enhanced nutritional physiology allows caterpillars to compensate when threatened. However, we report physiological costs of predation risk, including altered body composition (decreased glycogen) and reductions in assimilation efficiency later in development. Our findings indicate that hornworm caterpillars use temporally dynamic compensatory mechanisms that ameliorate the trade-off between predator avoidance and growth in the short term, deferring costs to a period when they are less vulnerable to predation.