Project description:Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.
Project description:The Ligurian Sea is one of the most studied Mediterranean basins. Since the beginning of the last century, many research expeditions have characterized its benthic and pelagic fauna through scuba diving and trawl surveys. However, a large knowledge gap exists about the composition of benthic communities extending into the so-called mesophotic or twilight depth range, currently under intense pressure from commercial and recreational fishing. A series of visual surveys, carried out by means of remotely operated vehicles between 2012 and 2018, were conducted along the Ligurian deep continental shelf and shelf break, between 30 and 210 m depth, in order to characterize the main benthic biocoenoses dwelling at this depth range and to determine the most relevant environmental factors that explain their spatial distribution. Deep circalittoral communities of the Ligurian Sea were represented by a mixture of species belonging to the deepest extension of shallow-water habitats and deep circalittoral ones. Twelve major biocoenoses were identified, each one characterized by specific preferences in depth range, substrate type and seabed slope. Those biocoenoses included gorgonian and hydrozoan forests, dense keratose sponge grounds, Dendrophyllia cornigera gardens, bryozoan beds and soft-bottom meadows of sabellid polychaetes and soft-corals. Other less common aggregations included six forests of black corals and two populations of Paramuricea macrospina. A georeferenced database has been created in order to provide information to managers and stakeholders about the location of the identified communities and high-diversity areas, aiming to facilitate sustainable long-term conservation of the Ligurian benthic ecosystem.
Project description:Globally, marine heatwave frequency, intensity, and duration are on the rise, posing a significant threat to plankton communities, the foundational elements of the marine food web. This study investigates the ecological and physiological responses of a temperate plankton community in the Thau lagoon, north-western Mediterranean, to a simulated +3°C ten-day heatwave followed by a ten-day post-heatwave period in in-situ mesocosms. Our analyses encompassed zooplankton grazing, production, community composition in water and sediment traps, as well as oxidative stress and anti-oxidant biomarkers. The results revealed increased abundances of harpacticoid copepods and polychaete larvae during the simulated heatwave and post-heatwave event. Sediment trap data indicated elevated mortality, particularly dominated by polychaete larvae during the post-heatwave period. Oxidative stress biomarker (lipid peroxidation LPX) levels in the plankton community correlated with temperature, signaling cellular damage during the heatwave. LPX increased and proteins decreased with increasing salinity during the experiment. Offspring production peaked during the post-heatwave phase. Notably, the calanoid copepod Acartia clausi exhibited a preference for ciliates as its primary prey, constituting 20% of the overall available prey. Our findings suggest a potential shift in coastal zooplankton communities during future marine heatwaves, transitioning from calanoid mesozooplankton dominance to a system featuring meroplankton and/or harpacticoid copepods. Although species preying on microzooplankton may gain advantages in such conditions, the study underscores the damaging impact of heatwaves on organismal lipids, with potential consequences for reproduction, growth, and survival within marine ecosystems.
Project description:While marine biofilms depend on environmental conditions and substrate, little is known about the influence of hydrodynamic forces. We tested different immersion modes (dynamic, cyclic and static) in Toulon Bay (north-western Mediterranean Sea; NWMS). The static mode was also compared between Toulon and Banyuls Bays. In addition, different artificial surfaces designed to hamper cell attachment (self-polishing coating: SPC; and fouling-release coating: FRC) were compared to inert plastic. Prokaryotic community composition was affected by immersion mode, surface characteristics and site. Rhodobacteriaceae and Flavobacteriaceae dominated the biofilm community structure, with distinct genera according to surface type or immersion mode. Cell density increased with time, greatly limited by hydrodynamic forces, and supposed to delay biofilm maturation. After 1 year, a significant impact of shear stress on the taxonomic structure of the prokaryotic community developed on each surface type was observed. When surfaces contained no biocides, roughness and wettability shaped prokaryotic community structure, which was not enhanced by shear stress. Conversely, the biocidal effect of SPC surfaces, already major in static immersion mode, was amplified by the 15 knots speed. The biofilm community on SPC was 60% dissimilar to the biofilm on the other surfaces and was distinctly colonized by Sphingomonadaceae ((Alter)Erythrobacter). At Banyuls, prokaryotic community structures were more similar between the four surfaces tested than at Toulon, due possibly to a masking effect of environmental constraints, especially hydrodynamic, which was greater than in Toulon. Finally, predicted functions such as cell adhesion confirmed some of the hypotheses drawn regarding biofilm formation over the artificial surfaces tested here.
Project description:BackgroundThe ability of actinomycetes to produce bioactive secondary metabolites makes them one of the most important prokaryotes. Marine actinomycetes are one of the most important secondary metabolites producers used for pharmaceuticals and other different industries.ResultsIn this study, the promising actinomycetes were isolated from Abu-Qir Bay. Four different media named as starch nitrate, starch casein, glycerol asparagine, and glycerol glycine were used as a preliminary experimental media to study the role of the medium components on the counts of actinomycetes in sediment samples. The results indicated that starch casein medium reported the highest counts (30-63 CFU/g) in all the tested sites. Lower counts were detected on starch nitrate and glycerol asparagine. On the other hand, glycerol glycine medium gave the lowest counts (15-48 CFU/g). Abu-Qir8 harbored the highest average count of actinomycetes (63 CFU/g), followed by Abu-Qir1 (48 CFU/g). The lower counts were detected in Abu-Qir5 and Abu-Qir7 (26 and 29 CFU/g, respectively). A total of 12 pure obtained actinomycetes isolates were subjected to morphological, physiological, and biochemical characterization. The selected actinobacterial isolates were subjected to numerical analysis, and the majority of isolates were grouped into four main clusters (A, B, C, & D), and each of them harbored two isolates; additionally, four isolates did not cluster at this similarity level. Isolate W4 was carefully chosen as the most promising pigment and antimicrobial agent's producer; the produced pigment was extracted and optimized by statistical experiments (PBD & BBD) and was tested for its anti-inflammatory activity. The results showed anti-inflammatory effect and prevented the denaturation of BSA protein at a concentration much higher than the safe dose and increased with increasing the pigment concentration.ConclusionMarine actinomycetes play a vital role in the production of novel and important economic metabolites that have many industrial and pharmaceuticals applications. Streptomyces genera are the most important actinomycetes that produce important metabolites as previously reported.
Project description:This contribution discusses an example of potential multi-hazard effects resulting from an earthquake in a highly seismogenic area of the Mediterranean Sea, the Augusta Bay, which presents high levels of contamination in sediments and seawater, due particularly to high-concentrations of mercury as a result of a long-term industrial exploitation. In particular, a high-resolution hydrodynamic and transport model is used to calculate the effects of enhanced mercury spreading in the open sea after significant damage and collapse of the artificial damming system confining the embayment where a very high concentration of Hg occurs in seafloor sediments and seawater. Coupling high-resolution 3D dynamic circulation modelling and sediment-seawater Hg fluxes calculated using the HR3DHG diffusion-reaction model for both inorganic and organic Hg species offers a valuable approach to simulating and estimating the effects of spatial dispersion of this contaminant due to unpredictable hazard events in coastal systems, with the potential attendant enhanced effects on the marine ecosystem. The simulated scenario definitely suggests that a combination of natural and anthropogenic multi-hazards calls for a thorough re-thinking of risk management in marine areas characterised by significant levels of contamination and where a deep understanding of the biogeochemical dynamics of pollutants does not cover all the aspects of danger for the environment.
Project description:Knowledge of the reproductive strategy is a key prerequisite to predict population dynamics and potential invasiveness of both native and non-indigenous outbreak-forming species. In 2014 the Lessepsian upside-down jellyfish Cassiopea andromeda reached the harbor of Palermo (NW Sicily, Thyrrenian Sea), to date its established westernmost outpost in the Mediterranean Sea. To predict C. andromeda reproductive success in its novel habitat, gonad histology was carried out to record the number and size of mature and immature oocytes. Both male and female simultaneously presented gametes at all stages of development suggesting an asynchronous, yet apparently continuous, reproduction strategy. Indeed, oogenesis was observed throughout the year from pre-vitellogenic, vitellogenetic, and late-vitellogenetic to mature oocytes suggesting multiple reproductive events, as known in other Mediterranean Rhizostomeae. Oocytes were found from May to December, with two seasonal peaks of abundance (late spring = 392 and autumn = 272), suggesting imminent spawning events. Further, jellyfish size varied significantly throughout the year, with maximum diameter (up to 24 cm) in summer, and minimum diameter (6 cm) in winter. Small-sized jellyfish in winter belong to the new cohort, most probably arising from intense summer strobilation of polyps. Late spring fertilization, planula development, and metamorphosis, followed by polyp strobilation in the summer months, may explain the late appearance of a new jellyfish cohort, likely coincident with that recorded throughout winter.
Project description:Marine animal forests are key mesophotic ecosystems that are under threat from increasing natural and human pressures. Despite the fact that various international agreements strive to preserve these fragile ecosystems, the environmental status of the majority of these animal-structured environments is unknown. Assessing their environmental status is the first step needed to monitor these essential habitats' health over time and include them within conservation and protection frameworks, such as the Marine Strategy Framework Directive. Based on Multibeam data and ROV footage, we characterized the geomorphological setting and evaluated the environmental status of seven black coral forests in the centre of the Western Mediterranean Sea, using the Mesophotic Assemblages Conservation Status (MACS) Index. The presence of two antipatharians, Antipathella subpinnata and Leiopathes glaberrima, characterized the seven investigated sites, dwelling on rocky substrate characterized by different environmental drivers (i.e., depth, slope of the substrate, terrain ruggedness, topographic positioning index, and aspect). From the combined evaluation of the associated benthic community status and the anthropogenic impacts affecting it, a "high" and "good" environmental status was assessed for five out of the seven studied black forests, with only two forests classified as having a "moderate" and "poor" status, respectively. Overall, our study showed a site-specific variability of mesophotic black coral forest status, explained by different biological community structures and environmental conditions mainly associated with morphological and anthropogenic factors.
Project description:During the last glaciation, the northern hemisphere experienced profound millennial-scale changes (termed Dansgaard-Oeschger (DO) events) in atmospheric and oceanic temperatures. In the North Atlantic, the fluctuations resulted in extremely unstable bottom water conditions with bottom water temperatures (BWT) varying up to > 5 °C. We have studied these changes in a core from 1,300 m water depth at Vestnesa Ridge, northwestern Svalbard margin to investigate a possible connection between BWT and seepage of methane from the seafloor covering the period ~ 50-6 ka. Beneath Vestnesa Ridge, gas hydrates containing vast amounts of methane are kept stable due to the high pressure and low temperatures. Release of gas is shown by numerous pockmarks on the seafloor. The pockmarks at 1,300 m water depth are presently inactive, but they bear witness of earlier activity. Our study shows that from ~ 50-6 ka, the core site experienced repeated increases in BWT and in the emissions of gas, both following the pattern of the DO events. This correspondence in time scale indicates that BWT was the primary forcing factor for the variability in methane release. However, the releases were delayed by up to > 1,000 years compared to the initial increase in BWT.
Project description:The Mediterranean Sea is a biodiversity hotspot where intense fishing pressure is associated with high bycatch rates of protected species (sea turtles and cetaceans) and top predators (sharks). Since the conservation of these species has become a priority, fishery scientists are faced with the challenge of reducing incidental catch, which entails high rates of mortality. Among the species threatened by fishing activities, the loggerhead turtle (Caretta caretta) is a charismatic species considered as "vulnerable" at the global scale. In the Mediterranean Sea trawl nets are the gears with the highest probability of catching protected species incidentally. A new flexible Turtle Excluder Device (TED) was tested for the first time on commercial bottom trawlers to assess its effectiveness in reducing bycatch in the Mediterranean Sea. Analysis of the total catches of the hauls made with and without the TED showed that the difference in terms of weight was not significant. The catch of the main commercial species showed similar rates without a significant loss of size (i.e. total length) with the exception of the largest anglerfish (Lophius spp.). The bycatch of control nets included mostly rays and sharks, but never turtles, although the authors learned from the crews of other vessels operating in the same areas at the time of the trials that they had caught some loggerhead turtles. Our study demonstrates that TED scan be adopted without significantly affecting commercial catch. This informs fishers and managers for a practical and effective means that may reduce the bycatch of threatened species in coastal Mediterranean demersal multispecies fisheries. The measures involving gear modifications require significant investment but they are technically feasible and are capable of improving the conservation prospects of these endangered species. Besides ensuring normal earnings, the TED induced a significant reduction of debris and litter in the codend, thus reducing catch sorting time and improving catch quality.