Project description:BACKGROUND:The aim of this study is to describe the peak match demands and compare them with average demands in basketball players, from an external load point of view, using different time windows. Another objective is to determine whether there are differences between positions and to provide an approach for practical applications. METHODS:During this observational study, each player wore a micro technology device. We collected data from 12 male basketball players (mean ± SD: age 17.56 ± 0.67 years, height 196.17 ± 6.71 cm, body mass 90.83 ± 11.16 kg) during eight games. We analyzed intervals for different time windows using rolling averages (ROLL) to determine the peak match demands for Player Load. A separate one-way analysis of variance (ANOVA) was used to identify statistically significant differences between playing positions across different intense periods. RESULTS:Separate one-way ANOVAs revealed statistically significant differences between 1 min, 5 min, 10 min, and full game periods for Player Load, F (3,168) = 231.80, ?p2 = 0.76, large, p < 0.001. It is worth noting that guards produced a statistically significantly higher Player Load in 5 min (p < 0.01, ?p2 = -0.69, moderate), 10 min (p < 0.001, ?p2 = -0.90, moderate), and full game (p < 0.001, ?p2 = -0.96, moderate) periods than forwards. CONCLUSIONS:The main finding is that there are significant differences between the most intense moments of a game and the average demands. This means that understanding game demands using averages drastically underestimates the peak demands of the game. This approach helps coaches and fitness coaches to prepare athletes for the most demanding periods of the game and present potential practical applications that could be implemented during training and rehabilitation sessions.
Project description:Current trends in the analysis of the physical fitness of athletes are based on subjecting the athlete to requirements similar to those found in competition. Regarding physical fitness, a thorough study of the capacities that affect the development of team sports in different ages and gender is required since the demands are not equivalent. The objective of this paper was to characterize the physical-physiological demands of athletes in an aerobic and anaerobic test specific to basketball players, as well as the evolution of the variables according to age and gender. The research was carried out in 149 players from different training categories (n = 103 male; n = 46 female). The athletes performed two field tests that evaluated both aerobic capacity and lactic anaerobic capacity. Each athlete was equipped with an inertial device during the tests. Sixteen variables (equal in both tests) were analyzed. Three of them evaluated technical-tactical aspects, four variables of objective internal load, six kinematic variables of objective external load (two related to distance and four related to accelerometry) and three neuromuscular variables of objective external load. The obtained results show significant differences in the variables analyzed according to the age and gender of the athletes. They are mainly due to factors related to the anthropometric maturation and development inherent in age and have an impact on the efficiency and technical and tactical requirements of the tests carried out and, therefore, on the obtained results in the tests.
Project description:This study was performed aimed at comparing multidirectional bilateral and unilateral jump performance and passive range of motion (ROM) of lower limbs between soccer and basketball young players and evaluating associations between inter-limb ROM asymmetry and bilateral jump performance. A total of 67 young male athletes participated in this study, who were classified as soccer (n = 40; 15.55 ± 1.5 y; 1.76 ± 0.12 m; 58.15 ± 10.82 kg; 19.84 ± 2.98 kg·m2) and basketball (n = 27; 15.7 ± 1.66 y; 1.76 ± 0.12 m; 62.33 ± 16.57 kg; 19.84 ± 2.98 kg·m2) players. Participants were asked to perform bilateral and unilateral multidirectional jumps, and passive ROM of hip (flexion, extension and abduction), knee (flexion) and ankle (dorsiflexion) joints was also assessed. Significant between-group differences were observed for hip extension with flexed knee ROM in dominant (soccer: 142.43 ± 7.74°; basketball: 148.63 ± 8.10°) and non-dominant (soccer: 144.38 ± 8.36°; basketball: 148.63 ± 6.45°) legs; hip flexion with flexed knee ROM in dominant (soccer: 13.26 ± 4.71°; basketball: 9.96 ± 3.42°) and non-dominant (soccer: 12.86 ± 4.55°; basketball: 9.70 ± 3.62°) legs; and for the ratio of hip abduction (soccer: 1.02 ± 0.08; basketball: 0.97 ± 0.11). However, no significant between-group differences were observed for bilateral and unilateral jump capacity, or for inter-limb asymmetries (dominant vs. non-dominant leg). Finally, no associations were observed between ROM ratio (dominant vs. non-dominant leg) and bilateral jump performance. These findings lead to the suggestion that differences on passive ROM values in young male athletes may be sport-specific. Additionally, there seems to be need for the implementation of training strategies specifically aimed at improving bilateral or unilateral jump ability, or at diminishing inter limb passive ROM differences in order to improve multidirectional jump performance for neither soccer nor basketball youth male players.
Project description:Reinforcement learning in complex natural environments is a challenging task because the agent should generalize from the outcomes of actions taken in one state of the world to future actions in different states of the world. The extent to which human experts find the proper level of generalization is unclear. Here we show, using the sequences of field goal attempts made by professional basketball players, that the outcome of even a single field goal attempt has a considerable effect on the rate of subsequent 3 point shot attempts, in line with standard models of reinforcement learning. However, this change in behaviour is associated with negative correlations between the outcomes of successive field goal attempts. These results indicate that despite years of experience and high motivation, professional players overgeneralize from the outcomes of their most recent actions, which leads to decreased performance.
Project description:Just as evolutionary biologists endeavour to link phenotypes to fitness, sport scientists try to identify traits that determine athlete success. Both disciplines would benefit from collaboration, and to illustrate this, we used an analytical approach common to evolutionary biology to isolate the phenotypes that promote success in soccer, a complex activity of humans played in nearly every modern society. Using path analysis, we quantified the relationships among morphology, balance, skill, athleticism and performance of soccer players. We focused on performance in two complex motor activities: a simple game of soccer tennis (1 on 1), and a standard soccer match (11 on 11). In both contests, players with greater skill and balance were more likely to perform better. However, maximal athletic ability was not associated with success in a game. A social network analysis revealed that skill also predicted movement. The relationships between phenotypes and success during individual and team sports have potential implications for how selection acts on these phenotypes, in humans and other species, and thus should ultimately interest evolutionary biologists. Hence, we propose a field of evolutionary sports science that lies at the nexus of evolutionary biology and sports science. This would allow biologists to take advantage of the staggering quantity of data on performance in sporting events to answer evolutionary questions that are more difficult to answer for other species. In return, sports scientists could benefit from the theoretical framework developed to study natural selection in non-human species.
Project description:Performance profiles have begun to be identified as extremely useful in order to help coaches individualize training according to the age and gender of athletes. Therefore, the aim of this study was to determine the activity demands and speed profile of U18 female basketball players during competitive matches. Time variables (real and playing time), distance variables (distance performed, distance in speed zones, high intensity distance and distance covered sprinting) and speed variables (number of sprints, sprint duration, maximum speed and average speed) were recorded from forty-eight players belonging to four teams (13 guards, 22 forwards and 13 centers). WIMUPROTM inertial measurement units with ultra-wide band (UWB) indoor-tracking technology recorded six matches during final four in the season 2018/2019. A one factor ANOVA with Cohen's effect sizes (d) were used to identify the differences between groups (playing position and match day). Distance per minute (123.96 vs 112.67 m), high intensity distance per minute (15.48 vs 14 m), running distance (403.2 vs 541.28 m) and average speed (5.05 vs 5.41 km/h) were significantly higher on day 3 than 1, respectively. About playing position, forwards played more minutes during games, so covered a greater distance, more sprints and high intensity actions than the rest. In spite of fatigue, day 3 showed a greater intensity than day 1, therefore, the last day was the crucial one for the teams in the tournament. Forwards when playing more minutes obtain higher absolute values ??but not per minute which could mean a lower performance of the team.
Project description:Early sport specialization has increased its popularity mostly based on the deliberate practice theory premises. In this study, we examined the influence of the age of onset of deliberate basketball practice on body size, functional performance (countermovement jump, line drill and yo-yo intermittent recovery level 1), motivation for achievement and competitiveness, motivation for deliberate practice and sources of enjoyment among young Brazilian basketball players. In addition, we adjusted for the influence of gender, age group, maturity status and state basketball federation on the outcomes. The sample included 120 female and 201 male adolescent basketball players aged 14.0 (1.7) years, on average. We grouped players by the age of onset of deliberate basketball practice as related to biologic maturation milestones (pre-puberty deliberate practice onset, mid-puberty deliberate practice onset and late-puberty deliberate practice onset). There was no substantial variation among contrasting players by the onset of deliberate practice in all of the outcomes. Adjusting for gender, male players with late-puberty deliberate practice onset had better functional performance than players with pre- and mid-puberty onset of practice. Females players with late-puberty deliberate practice onset had slightly worst functional performance than players with pre- and mid-puberty onset of practice. Early deliberate basketball practice does not appear to provide an advantage for the development of physiological functions. Likewise, enjoyment, motivation for deliberate practice and motivation for achievement and competition do not appear to be negatively influenced by early deliberate basketball practice. The debate about the relationship between time spent in deliberate practice and performance development in young athletes will need to emphasize the coaching pedagogical quality and the training environment and account for informal practice and deliberate play.
Project description:Although technical skills are a prerequisite for success in basketball, little is known about how they develop over time. In this study, we model the trajectories of technical skill development in young basketball players and investigate the effects of training experience, training volume, body composition, maturity status, physical performance, and club characteristics on skill development. A total of 264 male basketballers from five age-cohorts (11 to 15 years of age) were followed consecutively over three years using a mixed-longitudinal design. Technical skills, training experience and volume, basic anthropometrics, body composition, biological maturation and physical performance were assessed bi-annually. A multilevel hierarchical linear model was used for trajectory analysis. Non-linear trends (p < 0.01) were observed in speed shot shooting, control dribble, defensive movement, slalom sprint, and slalom dribble. Being more experienced and physically fitter had a significant (p < 0.05) positive effect on technical skill development; greater fat-free mass negatively affected skills demanding quick running and rapid changes of direction with or without the ball (p < 0.05). Training volume and biological age did not explain differences in technical skill development (p > 0.05). Moreover, belonging to different clubs had no significant influence on the technical skills trajectories of players. Our findings highlight the important role that individual differences play, over and beyond club structure, in developing skills. Findings improve our understanding on how technical skills develop during adolescence through training, growth, and biological maturation.
Project description:BackgroundThe aim of the investigation was to compare the occurrence of post-activation performance enhancement (PAPE) after drop jumps, or heavy sled towing, and the subsequent effect on repeated sprint ability (RSA).MethodsTen young basketball players (17 ± 1 yrs) performed, in randomized order, RSA test with changes of direction after a standardized warm up followed by drop jumps, heavy sled towing, or no exercise (control condition). Neuromuscular assessments composed of two maximal voluntary contractions of the knee extensors, peripheral nerve stimulation, and surface electromyography (EMG), responses were recorded before and immediately after the RSA. The EMG signal of leg muscles during sprinting were also recorded as well as the blood lactate concentration.ResultsThe drop jumps improved the RSA mean time (P = 0.033), total time (P = 0.031), and slowest time (P = 0.029) compared to control condition, while heavy sled towing did not change RSA outcomes (P > 0.05). All conditions exhibited a decrease of doublet high frequency stimulation force (pre-post measurement) (P = 0.023) and voluntary activation (P = 0.041), evidencing the occurrence from peripheral and central components of fatigue after RSA, respectively, but no difference was evident between-conditions. There was a significantly greater EMG activity during sprints for the biceps femoris after drop jumps, only when compared to control condition (P = 0.013).ConclusionRepeated drop jumps were effective to induce PAPE in the form of RSA, while heavy sled towing had no effect on RSA performance in young basketball players. Furthermore, both conditioning activities exhibited similar levels of fatigue following the RSA protocol. Thus, drop jumps may be used as an alternative to induce PAPE and thus improve performance during sprints in young male basketball players.