Project description:Recent advances in sequencing and informatic technologies have led to a deluge of publicly available genomic data. While it is now relatively easy to sequence, assemble, and identify genic regions in diploid plant genomes, functional annotation of these genes is still a challenge. Over the past decade, there has been a steady increase in studies utilizing machine learning algorithms for various aspects of functional prediction, because these algorithms are able to integrate large amounts of heterogeneous data and detect patterns inconspicuous through rule-based approaches. The goal of this review is to introduce experimental plant biologists to machine learning, by describing how it is currently being used in gene function prediction to gain novel biological insights. In this review, we discuss specific applications of machine learning in identifying structural features in sequenced genomes, predicting interactions between different cellular components, and predicting gene function and organismal phenotypes. Finally, we also propose strategies for stimulating functional discovery using machine learning-based approaches in plants.
Project description:Studies have shown that interactions of single nucleotide polymorphisms (SNPs) may play an important role in understanding the causes of complex disease. We have proposed an integrated machine learning method that combines two machine-learning methods-Random Forests (RF) and Multivariate Adaptive Regression Splines (MARS)-to identify a subset of important SNPs and detect interaction patterns more effectively and efficiently. In this two-stage RF-MARS (TRM) approach, RF is first applied to detect a predictive subset of SNPs, and then MARS is used to identify the interaction patterns. We evaluated the TRM performances in four models. RF variable selection was based on out-of-bag classification error rate (OOB) and variable important spectrum (IS). Our results support that RF(OOB) had better performance than MARS and RF(IS) in detecting important variables. This study demonstrates that TRM(OOB) , which is RF(OOB) plus MARS, has combined the strengths of RF and MARS in identifying SNP-SNP interactions in a scenario of 100 candidate SNPs. TRM(OOB) had greater true positive rate and lower false positive rate compared with MARS, particularly for searching interactions with a strong association with the outcome. Therefore, the use of TRM(OOB) is favored for exploring SNP-SNP interactions in a large-scale genetic variation study.
Project description:We focused on building models that incorporated transcription factor (TF)-DNA interaction data for 12 members of the Auxin Response Factor (ARF) family from soybean as assessed by DNA Affinity Purification and sequencing (DAP-seq).
Project description:Remote sensing techniques are now commonly applied to map and monitor urban land uses to measure growth and to assist with development and planning. Recent work in this area has highlighted the use of textures and other spatial features that can be measured in very high spatial resolution imagery. Far less attention has been given to using geospatial vector data (i.e. points, lines, polygons) to map land uses. This paper presents an approach to distinguish residential settlement types (regular vs. irregular) using an existing database of settlement points locating structures. Nine data features describing the density, distance, angles, and spacing of the settlement points are calculated at multiple spatial scales. These data are analysed alone and with five common remote sensing measures on elevation, slope, vegetation, and nighttime lights in a supervised machine learning approach to classify land use areas. The method was tested in seven provinces of Afghanistan (Balkh, Helmand, Herat, Kabul, Kandahar, Kunduz, Nangarhar). Overall accuracy ranged from 78% in Kandahar to 90% in Nangarhar. This research demonstrates the potential to accurately map land uses from even the simplest representation of structures.
Project description:Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease, and many other disease types, cause cognitive dysfunctions such as dementia via the progressive loss of structure or function of the body's neurons. However, the etiology of these diseases remains unknown, and diagnosing less common cognitive disorders such as vascular dementia (VaD) remains a challenge. In this work, we developed a machine-leaning-based technique to distinguish between normal control (NC), AD, VaD, dementia with Lewy bodies, and mild cognitive impairment at the microRNA (miRNA) expression level. First, unnecessary miRNA features in the miRNA expression profiles were removed using the Boruta feature selection method, and the retained feature sets were sorted using minimum redundancy maximum relevance and Monte Carlo feature selection to provide two ranking feature lists. The incremental feature selection method was used to construct a series of feature subsets from these feature lists, and the random forest and PART classifiers were trained on the sample data consisting of these feature subsets. On the basis of the model performance of these classifiers with different number of features, the best feature subsets and classifiers were identified, and the classification rules were retrieved from the optimal PART classifiers. Finally, the link between candidate miRNA features, including hsa-miR-3184-5p, has-miR-6088, and has-miR-4649, and neurodegenerative diseases was confirmed using recently published research, laying the groundwork for more research on miRNAs in neurodegenerative diseases for the diagnosis of cognitive impairment and the understanding of potential pathogenic mechanisms.
Project description:Circular RNAs (circRNAs), which play vital roles in many regulatory pathways, are widespread in many species. Although many circRNAs have been discovered in plants and animals, the functions of these RNAs have not been fully investigated. In addition to the function of circRNAs as microRNA (miRNA) decoys, the translation potential of circRNAs is important for the study of their functions; yet, few tools are available to identify their translation potential. With the development of high-throughput sequencing technology and the emergence of ribosome profiling technology, it is possible to identify the coding ability of circRNAs with high sensitivity. To evaluate the coding ability of circRNAs, we first developed the CircCode tool and then used CircCode to investigate the translation potential of circRNAs from humans and Arabidopsis thaliana. Based on the ribosome profile databases downloaded from NCBI, we found 3,610 and 1,569 translated circRNAs in humans and A. thaliana, respectively. Finally, we tested the performance of CircCode and found a low false discovery rate and high sensitivity for identifying circRNA coding ability. CircCode, a Python 3-based framework for identifying the coding ability of circRNAs, is also a simple and powerful command line-based tool. To investigate the translation potential of circRNAs, the user can simply fill in the given configuration file and run the Python 3 scripts. The tool is freely available at https://github.com/PSSUN/CircCode.
Project description:COVID-19, a severe respiratory disease caused by a new type of coronavirus SARS-CoV-2, has been spreading all over the world. Patients infected with SARS-CoV-2 may have no pathogenic symptoms, i.e., presymptomatic patients and asymptomatic patients. Both patients could further spread the virus to other susceptible people, thereby making the control of COVID-19 difficult. The two major challenges for COVID-19 diagnosis at present are as follows: (1) patients could share similar symptoms with other respiratory infections, and (2) patients may not have any symptoms but could still spread the virus. Therefore, new biomarkers at different omics levels are required for the large-scale screening and diagnosis of COVID-19. Although some initial analyses could identify a group of candidate gene biomarkers for COVID-19, the previous work still could not identify biomarkers capable for clinical use in COVID-19, which requires disease-specific diagnosis compared with other multiple infectious diseases. As an extension of the previous study, optimized machine learning models were applied in the present study to identify some specific qualitative host biomarkers associated with COVID-19 infection on the basis of a publicly released transcriptomic dataset, which included healthy controls and patients with bacterial infection, influenza, COVID-19, and other kinds of coronavirus. This dataset was first analysed by Boruta, Max-Relevance and Min-Redundancy feature selection methods one by one, resulting in a feature list. This list was fed into the incremental feature selection method, incorporating one of the classification algorithms to extract essential biomarkers and build efficient classifiers and classification rules. The capacity of these findings to distinguish COVID-19 with other similar respiratory infectious diseases at the transcriptomic level was also validated, which may improve the efficacy and accuracy of COVID-19 diagnosis.
Project description:Machine learning is a class of algorithms able to handle a large number of predictors with potentially nonlinear relationships. By applying machine learning to obesity, researchers can examine how risk factors across multiple settings (e.g., school and home) interact to best predict childhood obesity risk. In this narrative review, we provide an overview of studies that have applied machine learning to predict childhood obesity using a combination of sociodemographic and behavioral risk factors. The objective is to summarize the key determinants of obesity identified in existing machine learning studies and highlight opportunities for future machine learning applications in the field. Of 15 peer-reviewed studies, approximately half examined early childhood (0-24 months of age) determinants. These studies identified child's weight history (e.g., history of overweight/obesity or large increases in weight-related measures between birth and 24 months of age) and parental overweight/obesity (current or prior) as key risk factors, whereas the remaining studies indicated that social factors and physical inactivity were important in middle childhood and late childhood/adolescence. Across age groups, findings suggested that race/ethnic-specific models may be needed to accurately predict obesity from middle childhood onward. Future studies should consider using existing large data sets to take advantage of the benefits of machine learning and should collect a wider range of novel risk factors (e.g., psychosocial and sociocultural determinants of health) to better predict childhood obesity. Ultimately, such research can aid in the development of effective obesity prevention interventions, particularly ones that address the disproportionate burden of obesity experienced by racial/ethnic minorities.
Project description:Conserved residues in protein homolog sequence alignments are structurally or functionally important. For intrinsically disordered proteins or proteins with intrinsically disordered regions (IDRs), however, alignment often fails because they lack a steric structure to constrain evolution. Although sequences vary, the physicochemical features of IDRs may be preserved in maintaining function. Therefore, a method to retrieve common IDR features may help identify functionally important residues. We applied unsupervised contrastive learning to train a model with self-attention neuronal networks on human IDR orthologs. Parameters in the model were trained to match sequences in ortholog pairs but not in other IDRs. The trained model successfully identifies previously reported critical residues from experimental studies, especially those with an overall pattern (e.g., multiple aromatic residues or charged blocks) rather than short motifs. This predictive model can be used to identify potentially important residues in other proteins, improving our understanding of their functions. The trained model can be run directly from the Jupyter Notebook in the GitHub repository using Binder (mybinder.org). The only required input is the primary sequence. The training scripts are available on GitHub (https://github.com/allmwh/IFF). The training datasets have been deposited in an Open Science Framework repository (https://osf.io/jk29b).