Ontology highlight
ABSTRACT:
SUBMITTER: Pemberton HG
PROVIDER: S-EPMC10622563 | biostudies-literature | 2023 Nov
REPOSITORIES: biostudies-literature
Pemberton Hugh G HG Wu Jiaming J Kommers Ivar I Müller Domenique M J DMJ Hu Yipeng Y Goodkin Olivia O Vos Sjoerd B SB Bisdas Sotirios S Robe Pierre A PA Ardon Hilko H Bello Lorenzo L Rossi Marco M Sciortino Tommaso T Nibali Marco Conti MC Berger Mitchel S MS Hervey-Jumper Shawn L SL Bouwknegt Wim W Van den Brink Wimar A WA Furtner Julia J Han Seunggu J SJ Idema Albert J S AJS Kiesel Barbara B Widhalm Georg G Kloet Alfred A Wagemakers Michiel M Zwinderman Aeilko H AH Krieg Sandro M SM Mandonnet Emmanuel E Prados Ferran F de Witt Hamer Philip P Barkhof Frederik F Eijgelaar Roelant S RS
Scientific reports 20231102 1
This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 ...[more]