Unknown

Dataset Information

0

Shape-Morphing Photoresponsive Hydrogels Reveal Dynamic Topographical Conditioning of Fibroblasts.


ABSTRACT: The extracellular environment defines a physical boundary condition with which cells interact. However, to date, cell response to geometrical environmental cues is largely studied in static settings, which fails to capture the spatiotemporally varying cues cells receive in native tissues. Here, a photoresponsive spiropyran-based hydrogel is presented as a dynamic, cell-compatible, and reconfigurable substrate. Local stimulation with blue light (455 nm) alters hydrogel swelling, resulting in on-demand reversible micrometer-scale changes in surface topography within 15 min, allowing investigation into cell response to controlled geometry actuations. At short term (1 h after actuation), fibroblasts respond to multiple rounds of recurring topographical changes by reorganizing their nucleus and focal adhesions (FA). FAs form primarily at the dynamic regions of the hydrogel; however, this propensity is abolished when the topography is reconfigured from grooves to pits, demonstrating that topographical changes dynamically condition fibroblasts. Further, this dynamic conditioning is found to be associated with long-term (72 h) maintenance of focal adhesions and epigenetic modifications. Overall, this study offers a new approach to dissect the dynamic interplay between cells and their microenvironment and shines a new light on the cell's ability to adapt to topographical changes through FA-based mechanotransduction.

SUBMITTER: Bril M 

PROVIDER: S-EPMC10625123 | biostudies-literature | 2023 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Shape-Morphing Photoresponsive Hydrogels Reveal Dynamic Topographical Conditioning of Fibroblasts.

Bril Maaike M   Saberi Aref A   Jorba Ignasi I   van Turnhout Mark C MC   Sahlgren Cecilia M CM   Bouten Carlijn V C CVC   Schenning Albert P H J APHJ   Kurniawan Nicholas A NA  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20230923 31


The extracellular environment defines a physical boundary condition with which cells interact. However, to date, cell response to geometrical environmental cues is largely studied in static settings, which fails to capture the spatiotemporally varying cues cells receive in native tissues. Here, a photoresponsive spiropyran-based hydrogel is presented as a dynamic, cell-compatible, and reconfigurable substrate. Local stimulation with blue light (455 nm) alters hydrogel swelling, resulting in on-d  ...[more]

Similar Datasets

| S-EPMC7950730 | biostudies-literature
| S-EPMC10764310 | biostudies-literature
| S-EPMC6750057 | biostudies-literature
| S-EPMC7190360 | biostudies-literature
| S-EPMC8748998 | biostudies-literature
| S-EPMC4049491 | biostudies-literature
| S-EPMC6968942 | biostudies-literature
| S-EPMC4974615 | biostudies-literature
| S-EPMC9701196 | biostudies-literature
| S-EPMC10533550 | biostudies-literature