Project description:Climate change is one of the biggest threats that human society currently needs to face. Heat waves associated with global warming negatively affect plant growth and development and will increase in intensity and frequency in the coming years. Tomato is one of the most produced and consumed fruit in the world but remarkable yield losses occur every year due to the sensitivity of many cultivars to heat stress. New insights into how tomato plants are responding to heat stress will contribute to the development of cultivars with high yields under harsh temperature conditions. In this study, the analysis of microsporogenesis and pollen germination rate of eleven tomato cultivars after exposure to a chronic heat stress revealed differences between genotypes. The transcriptome of floral buds at two developmental stages of five cultivars revealed common and specific molecular responses implemented by tomato cultivars to cope with chronic heat stress. These data provide valuable insights into the diversity of the genetic response of floral buds from different cultivars to heat stress and may contribute to the development of future climate resilient tomato varieties.
Project description:Climate change is causing temperature increment in crop production areas worldwide, generating conditions of heat stress that negatively affect crop productivity. Tomato (Solanum lycopersicum), a major vegetable crop, is highly susceptible to conditions of heat stress. When tomato plants are exposed to ambient day/night temperatures that exceed 32 °C/20 °C, respectively, during the reproductive phase, fruit set and fruit weight are reduced, leading to a significant decrease in yield. Processing tomato cultivars are cultivated in open fields, where environmental conditions are not controlled; therefore, plants are exposed to multiple abiotic stresses, including heat stress. Nonetheless, information on stress response in processing tomatoes is very limited. Understanding the physiological response of modern processing tomato cultivars to heat stress may facilitate the development of thermotolerant cultivars. Here, we compared two tomato processing cultivars, H4107 and H9780, that we found to be constantly differing in yield performance. Using field and temperature-controlled greenhouse experiments, we show that the observed difference in yield is attributed to the occurrence of heat stress conditions. In addition, fruit set and seed production were significantly higher in the thermotolerant cultivar H4107, compared with H9780. Despite the general acceptance of pollen viability as a measure of thermotolerance, there was no difference in the percentage of viable pollen between H4107 and H9780 under either of the conditions tested. In addition to observations of similar pollen germination and bud abscission rates, our results suggest that processing tomato cultivars may present a particular case, in which pollen performance is not determining reproductive thermotolerance. Our results also demonstrate the value of combining controlled and uncontrolled experimental settings, in order to validate and identify heat stress-related responses, thus facilitating the development of thermotolerant processing tomato cultivars.
Project description:BackgroundPanax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited.MethodsWe sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed.ResultsCP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars.ConclusionOur comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.
Project description:Cadmium (Cd) pollution in soils is an increasing problem worldwide, and it affects crop production and safety. We identified Cd-tolerant and -sensitive cultivars by testing 258 accessions of Medicago truncatula at seedling stage, using the relative root growth (RRG) as an indicator of Cd tolerance. The factorial analysis (principal component analysis method) of the different growth parameters analyzed revealed a clear differentiation between accessions depending on the trait (tolerant or sensitive). We obtained a normalized index of Cd tolerance, which further supported the suitability of RRG to assess Cd tolerance at seedling stage. Cd and elements contents were analyzed, but no correlations with the tolerance trait were found. The responses to Cd stress of two accessions which had similar growth in the absence of Cd, different sensitivity to the metal but similar Cd accumulation capacity, were analyzed during germination, seedling stage, and in mature plants. The results showed that the Cd-tolerant accession (CdT) displayed a higher tolerance than the sensitive cultivar (CdS) in all the studied stages. The increased gene expression of the three main NADPH recycling enzymes in CdT might be key for this tolerance. In CdS, Cd stress produced strong expression of most of the genes that encode enzymes involved in glutathione and phytochelatin biosynthesis (MtCYS, MtγECS, and MtGSHS), as well as GR, but it was not enough to avoid a redox status imbalance and oxidative damages. Our results on gene expression, enzyme activity, antioxidant content, and lipid peroxidation indicate different strategies to cope with Cd stress between CdS and CdT, and provide new insights on Cd tolerance and Cd toxicity mechanisms in M. truncatula.
Project description:Jujube (Ziziphus jujuba Mill.) is an economically and agriculturally significant fruit crop and is widely cultivated throughout the world. Heat stress has recently become a primary abiotic stressor limiting the productivity and growth of jujube, as well as other crops. There are few studies, however, that have performed transcriptome profiling of jujube when it is exposed to heat stress. In this study, we observed the physiochemical changes and analyzed gene expression profiles in resistant jujube cultivar 'HR' and sensitive cultivar 'HS' subjected to heat stress for 0, 1, 3, and 5d. Twenty-four cDNA libraries from 'HR' and 'HS' leaves were built with a transcriptome assay. A total of 6887 and 5077 differentially expressed genes were identified in 'HR' and 'HS' after 1d, 3d, and 5d of heat stress compared with the control treatment, GO and KEGG enrichment analysis revealed that some of the genes were highly enriched in oxidation-reduction process, response to stress, response to water deprivation, response to heat, carbon metabolism, protein processing in endoplasmic reticulum, and plant hormone signal transduction and may play vital roles in the heat stress response in jujube plants. Differentially expressed genes were identified in the two cultivars, including heat shock proteins, transcriptional factors, and ubiquitin-protein ligase genes. And the expression pattern of nine genes was also validated by qRT-PCR. These results will provide useful information for elucidating the molecular mechanism underlying heat stress in different jujube cultivars.
Project description:Tomato is an essential annual crop providing human food worldwide. It is estimated that by the year 2050 more than 50% of the arable land will become saline and, in this respect, in recent years, researchers have focused their attention on studying how tomato plants behave under various saline conditions. Plenty of research papers are available regarding the effects of salinity on tomato plant growth and development, that provide information on the behavior of different cultivars under various salt concentrations, or experimental protocols analyzing various parameters. This review gives a synthetic insight of the recent scientific advances relevant into the effects of salinity on the morphological, physiological, biochemical, yield, fruit quality parameters, and on gene expression of tomato plants. Notably, the works that assessed the salinity effects on tomatoes were firstly identified in Scopus, PubMed, and Web of Science databases, followed by their sifter according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline and with an emphasis on their results. The assessment of the selected studies pointed out that salinity is one of the factors significantly affecting tomato growth in all stages of plant development. Therefore, more research to find solutions to increase the tolerance of tomato plants to salinity stress is needed. Furthermore, the findings reported in this review are helpful to select, and apply appropriate cropping practices to sustain tomato market demand in a scenario of increasing salinity in arable lands due to soil water deficit, use of low-quality water in farming and intensive agronomic practices.
Project description:Protein metabolism plays an important role in plant adaptation to heat stress. This study was designed to identify heat-responsive proteins in roots associated with thermotolerance for two C3 grass species contrasting in heat tolerance, thermal Agrostis scabra and heat-sensitive Agrostis stolonifera L. Plants were exposed to 20 degrees C (control), 30 C (moderate heat stress), or 40 degrees C (severe heat stress) in growth chambers. Roots were harvested at 2 d and 10 d after temperature treatment. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis. Seventy protein spots were regulated by heat stress in at least one species. Under both moderate and severe heat stress, more proteins were down-regulated than were up-regulated, and thermal A. scabra roots had more up-regulated proteins than A. stolonifera roots. The sequences of 66 differentially expressed protein spots were identified using mass spectrometry. The results suggested that the up-regulation of sucrose synthase, glutathione S-transferase, superoxide dismutase, and heat shock protein Sti (stress-inducible protein) may contribute to the superior root thermotolerance of A. scabra. In addition, phosphoproteomic analysis indicated that two isoforms of fructose-biphosphate aldolase were highly phosphorylated under heat stress, and thermal A. scabra had greater phosphorylation than A. stolonifera, suggesting that the aldolase phosphorylation might be involved in root thermotolerance.
Project description:The Poaceae, or grasses, include many agriculturally important cereal crops such as rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare) and bread wheat (Triticum aestivum). Barley is a widely grown cereal crop used for stock feed, malting and brewing. Abiotic stresses, particularly global warming, are the major causes of crop yield losses by affecting fertility and seed set. However, effects of heat stress on reproductive structures and fertility in barley have not been extensively investigated. In this study we examined three commercial European spring barley varieties under high temperature conditions to investigate the effects on floret development. Using a combination of fertility assays, X-ray micro computed tomography, 3-dimensional modelling, cytology and immunolabelling, we observed that male reproductive organs are severely impacted by increased temperature, while the female reproductive organs are less susceptible. Importantly, the timing of stress relative to reproductive development had a significant impact on fertility in a cultivar-dependent manner, this was most significant at pollen mitosis stage with fertility ranged from 31.6-56.0% depending on cultivar. This work provides insight into how heat stress, when applied during male pollen mother cell meiosis and pollen mitosis, affects barley fertility and seed set, and also describes complementary invasive and non-invasive techniques to investigate floret development. This information will be used to identify and study barley cultivars that are less susceptible to heat stress at specific stages of floral development.
Project description:As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.