Project description:BackgroundThe therapeutic resistance of pancreatic ductal adenocarcinoma (PDAC) is partly ascribed to ineffective delivery of chemotherapy to cancer cells. We hypothesized that physical properties at vascular, extracellular, and cellular scales influence delivery of and response to gemcitabine-based therapy.MethodsWe developed a method to measure mass transport properties during routine contrast-enhanced CT scans of individual human PDAC tumors. Additionally, we evaluated gemcitabine infusion during PDAC resection in 12 patients, measuring gemcitabine incorporation into tumor DNA and correlating its uptake with human equilibrative nucleoside transporter (hENT1) levels, stromal reaction, and CT-derived mass transport properties. We also studied associations between CT-derived transport properties and clinical outcomes in patients who received preoperative gemcitabine-based chemoradiotherapy for resectable PDAC.ResultsTransport modeling of 176 CT scans illustrated striking differences in transport properties between normal pancreas and tumor, with a wide array of enhancement profiles. Reflecting the interpatient differences in contrast enhancement, resected tumors exhibited dramatic differences in gemcitabine DNA incorporation, despite similar intravascular pharmacokinetics. Gemcitabine incorporation into tumor DNA was inversely related to CT-derived transport parameters and PDAC stromal score, after accounting for hENT1 levels. Moreover, stromal score directly correlated with CT-derived parameters. Among 110 patients who received preoperative gemcitabine-based chemoradiotherapy, CT-derived parameters correlated with pathological response and survival.ConclusionGemcitabine incorporation into tumor DNA is highly variable and correlates with multiscale transport properties that can be derived from routine CT scans. Furthermore, pretherapy CT-derived properties correlate with clinically relevant endpoints.Trial registrationClinicaltrials.gov NCT01276613.FundingLustgarten Foundation (989161), Department of Defense (W81XWH-09-1-0212), NIH (U54CA151668, KCA088084).
Project description:A clear contradiction exists between cytotoxic in-vitro studies demonstrating effectiveness of Gemcitabine to curtail pancreatic cancer and in-vivo studies failing to show Gemcitabine as an effective treatment. The outcome of chemotherapy in metastatic stages, where surgery is no longer viable, shows a 5-year survival <5%. It is apparent that in-vitro experiments, no matter how well designed, may fail to adequately represent the complex in-vivo microenvironmental and phenotypic characteristics of the cancer, including cell proliferation and apoptosis. We evaluate in-vitro cytotoxic data as an indicator of in-vivo treatment success using a mathematical model of tumor growth based on a dimensionless formulation describing tumor biology. Inputs to the model are obtained under optimal drug exposure conditions in-vitro. The model incorporates heterogeneous cell proliferation and death caused by spatial diffusion gradients of oxygen/nutrients due to inefficient vascularization and abundant stroma, and thus is able to simulate the effect of the microenvironment as a barrier to effective nutrient and drug delivery. Analysis of the mathematical model indicates the pancreatic tumors to be mostly resistant to Gemcitabine treatment in-vivo. The model results are confirmed with experiments in live mice, which indicate uninhibited tumor proliferation and metastasis with Gemcitabine treatment. By extracting mathematical model parameter values for proliferation and death from monolayer in-vitro cytotoxicity experiments with pancreatic cancer cells, and simulating the effects of spatial diffusion, we use the model to predict the drug response in-vivo, beyond what would have been expected from sole consideration of the cancer intrinsic resistance. We conclude that this integrated experimental/computational approach may enhance understanding of pancreatic cancer behavior and its response to various chemotherapies, and, further, that such an approach could predict resistance based on pharmacokinetic measurements with the goal to maximize effective treatment strategies.
Project description:Pancreatic ductal adenocarcinoma (PDAC), commonly referred to as pancreatic cancer, ranks among the leading causes of cancer-related deaths in the Western world due to disease presentation at an advanced stage, early metastasis and generally a very limited response to chemotherapy or radiotherapy. Gemcitabine remains a cornerstone of PDAC treatment in all stages of the disease despite suboptimal clinical effects primarily caused by molecular mechanisms limiting its cellular uptake and activation and overall efficacy, as well as the development of chemoresistance within weeks of treatment initiation. To circumvent gemcitabine resistance in PDAC, several novel therapeutic approaches, including chemical modifications of the gemcitabine molecule generating numerous new prodrugs, as well as new entrapment designs of gemcitabine in colloidal systems such as nanoparticles and liposomes, are currently being investigated. Many of these approaches are reported to be more efficient than the parent gemcitabine molecule when tested in cellular systems and in vivo in murine tumor model systems; however, although promising, their translation to clinical use is still in a very early phase. This review discusses gemcitabine metabolism, activation and chemoresistance entities in the gemcitabine cytotoxicity pathway and provides an overview of approaches to override chemoresistance in pancreatic cancer.
Project description:ObjectivePancreatic cancer is one of the most malignant tumors, with rapid metastasis, high mortality rate, and difficult early screening. Currently, gemcitabine is a first-line drug for pancreatic cancer patients, but its clinical effect is limited due to drug resistance. It is particularly important to further identify biomarkers associated with gemcitabine resistance to improve the sensitivity of gemcitabine treatment.MethodsDrug sensitivity data and the corresponding transcript data derived from the Genomics of Drug Sensitivity in Cancer (GDSC) database for correlation analysis was adopted to obtain genes related to gemcitabine sensitivity. Moreover, the survival model of pancreatic cancer patients treated with gemcitabine in The Cancer Genome Atlas (TCGA) database was utilized to obtain key genes. Multiple in vitro assays were performed to verify the function of the key biomarker.ResultsEndoplasmic Reticulum Aminopeptidase 2 (ERAP2) was identified as a biomarker promoting gemcitabine resistance, and its high expression resulted in a worse prognosis. Besides, gemcitabine significantly increased the mRNA and protein levels of ERAP2 in pancreatic cancer cells. Additionally, ERAP2 knockdown suppressed tumorigenesis and potentiated gemcitabine-induced growth, migration and invasion inhibition in human pancreatic cancer cells.ConclusionsERAP2 may be a novel key biomarker for gemcitabine sensitivity and diagnosis, thus providing an effective therapeutic strategy for pancreatic cancer treatment.
Project description:Pancreatic cancer is one of the deadliest causes of cancer-related death in the United States, with a 5-year overall survival rate of 6 to 8%. These statistics suggest that immediate medical attention is needed. Gemcitabine (GEM) is the gold standard first-line single chemotherapy agent for pancreatic cancer but, after a few months, cells develop chemoresistance. Multiple clinical and experimental investigations have demonstrated that a combination or co-administration of other drugs as chemotherapies with GEM lead to superior therapeutic benefits. However, such combination therapies often induce severe systemic toxicities. Thus, developing strategies to deliver a combination of chemotherapeutic agents more securely to patients is needed. Nanoparticle-mediated delivery can offer to load a cocktail of drugs, increase stability and availability, on-demand and tumor-specific delivery while minimizing chemotherapy-associated adverse effects. This review discusses the available drugs being co-administered with GEM and the limitations associated during the process of co-administration. This review also helps in providing knowledge of the significant number of delivery platforms being used to overcome problems related to gemcitabine-based co-delivery of other chemotherapeutic drugs, thereby focusing on how nanocarriers have been fabricated, considering the modes of action, targeting receptors, pharmacology of chemo drugs incorporated with GEM, and the differences in the physiological environment where the targeting is to be done. This review also documents the focus on novel mucin-targeted nanotechnology which is under development for pancreatic cancer therapy.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with poor prognosis. Gemcitabine is the first-line therapy for PDAC, but gemcitabine resistance is a major impediment to achieving satisfactory clinical outcomes. This study investigated whether methylglyoxal (MG), an oncometabolite spontaneously formed as a by-product of glycolysis, notably favors PDAC resistance to gemcitabine. We observed that human PDAC tumors expressing elevated levels of glycolytic enzymes together with high levels of glyoxalase 1 (GLO1), the major MG-detoxifying enzyme, present with a poor prognosis. Next, we showed that glycolysis and subsequent MG stress are triggered in PDAC cells rendered resistant to gemcitabine when compared with parental cells. In fact, acquired resistance, following short and long-term gemcitabine challenges, correlated with the upregulation of GLUT1, LDHA, GLO1, and the accumulation of MG protein adducts. We showed that MG-mediated activation of heat shock response is, at least in part, the molecular mechanism underlying survival in gemcitabine-treated PDAC cells. This novel adverse effect of gemcitabine, i.e., induction of MG stress and HSR activation, is efficiently reversed using potent MG scavengers such as metformin and aminoguanidine. We propose that the MG blockade could be exploited to resensitize resistant PDAC tumors and to improve patient outcomes using gemcitabine therapy.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second cause of cancer death by 2022. For nearly 80% of patients, diagnosis occurs at an advanced, nonsurgical stage, making such patients incurable. Gemcitabine is still an important component in PDAC treatment and is most often used as a backbone to test new targeted therapies and there is, to date, no routine biomarker to predict its efficacy. Samples from a phase III randomized trial were used to develop through a large approach based on blood-based liquid biopsy, transcriptome profiling, and machine learning, a nine gene predictive signature for gemcitabine sensitivity. Patients with a positive test (41.6%) had a significantly longer progression free survival (PFS) (3.8 months vs. 1.9 months p = 0.03) and a longer overall survival (OS) (14.5 months vs. 5.1, p < 0.0001). In multivariate analyses, this signature was independently associated with PFS (HR = 0.5 (0.28-0.9) p = 0.025) and OS (HR = 0.39 (0.21-0.7) p = 0.002).
Project description:Gemcitabine is a chemotherapeutic agent for pancreatic cancer treatment. It has also been demonstrated to inhibit human pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. The aim of the present study was to investigate the suppressive effect of fucoxanthin, a marine carotenoid, in combination with gemcitabine on pancreatic cancer cells. MTT assays and cell cycle analysis using flow cytometry were performed to study the mechanism of action. The results revealed that combining a low dose of fucoxanthin with gemcitabine enhanced the cell viability of human embryonic kidney cells, 293, while a high dose of fucoxanthin enhanced the inhibitory effect of gemcitabine on the cell viability of this cell line. In addition, the enhanced effect of fucoxanthin on the inhibitory effect of gemcitabine on PANC-1 cells was significant (P<0.01). Fucoxanthin combined with gemcitabine also exerted significant enhancement of the anti-proliferation effect in MIA PaCa-2 cells in a concentration dependent manner (P<0.05), compared with gemcitabine treatment alone. In conclusion, fucoxanthin improved the cytotoxicity of gemcitabine on human pancreatic cancer cells at concentrations that were not cytotoxic to non-cancer cells. Thus, fucoxanthin has the potential to be used as an adjunct in pancreatic cancer treatment.
Project description:Pancreatic cancer is one of the malignant diseases with the worst prognosis. Resistance to chemotherapy is a major difficulty in treating the disease. We analyzed plasma samples from a genetically engineered mouse model of pancreatic cancer and found soluble vascular cell adhesion molecule-1 (sVCAM-1) increases in response to gemcitabine treatment. VCAM-1 was expressed and secreted by murine and human pancreatic cancer cells. Subcutaneous allograft tumors with overexpression or knock-down of VCAM-1, as well as VCAM-1-blocking treatment in the spontaneous mouse model of pancreatic cancer, revealed that sVCAM-1 promotes tumor growth and resistance to gemcitabine treatment in vivo but not in vitro. By analyzing allograft tumors and co-culture experiments, we found macrophages were attracted by sVCAM-1 to the tumor microenvironment and facilitated resistance to gemcitabine in tumor cells. In a clinical setting, we found that the change of sVCAM-1 in the plasma of patients with advanced pancreatic cancer was an independent prognostic factor for gemcitabine treatment. Collectively, gemcitabine treatment increases the release of sVCAM-1 from pancreatic cancer cells, which attracts macrophages into the tumor, thereby promoting the resistance to gemcitabine treatment. sVCAM-1 may be a potent clinical biomarker and a potential target for the therapy in pancreatic cancer.
Project description:FOLFIRINOX is superior to gemcitabine in patients with pancreatic cancer, but this regimen is associated with toxicity and biomarkers for response are warranted. MicroRNAs can mediate drug resistance and could provide predictive information. Altered expressions of several microRNAs including miR-21-5p, miR-10b-5p and miR-34a-5p have been previously linked to a worse response to gemcitabine. We investigated the influence of expression levels in tumor tissue of those three microRNAs on outcome to FOLFIRINOX. Twenty-nine patients with sufficient formalin-fixed paraffin-embedded tumor tissue were identified. There was no significant association between high and low expression groups for these three microRNA. We conclude that polychemotherapy combination can overcome intrinsic negative prognostic factors.