Project description:IL-36 is a member of the IL-1 superfamily and consists of three agonists and one receptor antagonist (IL-36Ra). The three endogenous agonists, IL-36α, -β, and -γ, act primarily as proinflammatory cytokines, and their signaling through the IL-36 receptor (IL-36R) promotes immune cell infiltration and secretion of inflammatory and chemotactic molecules. However, IL-36 signaling also fosters secretion of profibrotic soluble mediators, suggesting a role in fibrotic disorders. IL-36 isoforms and IL-36 have been implicated in inflammatory diseases including psoriasis, arthritis, inflammatory bowel diseases, and allergic rhinitis. Moreover, IL-36 has been connected to fibrotic disorders affecting the kidney, lung, and intestines. This review summarizes the expression, cellular source, and function of IL-36 in inflammation and fibrosis in various organs, and proposes that IL-36 modulation may prove valuable in preventing or treating inflammatory and fibrotic diseases and may reveal a mechanistic link between inflammation and fibrosis.
Project description:Pharmacologic evidence suggests that activation of A(2B) adenosine receptors results in proinflammatory effects relevant to the progression of asthma, a chronic lung disease associated with elevated interstitial adenosine concentrations in the lung. This concept has been challenged by the finding that genetic removal of A(2B) receptors leads to exaggerated responses in models of acute inflammation. Therefore, the goal of our study was to determine the effects of A(2B) receptor gene ablation in the context of ovalbumin-induced chronic pulmonary inflammation. We found that repetitive airway allergen challenge induced a significant increase in adenosine levels in fluid recovered by bronchoalveolar lavage. Genetic ablation of A(2B) receptors significantly attenuated allergen-induced chronic pulmonary inflammation, as evidenced by a reduction in the number of bronchoalveolar lavage eosinophils and in peribronchial eosinophilic infiltration. The most striking difference in the pulmonary inflammation induced in A(2B) receptor knockout (A(2B)KO) and wild-type mice was the lack of allergen-induced IL-4 release in the airways of A(2B)KO animals, in line with a significant reduction in IL-4 protein and mRNA levels in lung tissue. In addition, attenuation of allergen-induced transforming growth factor-beta release in airways of A(2B)KO mice correlated with reduced airway smooth muscle and goblet cell hyperplasia/hypertrophy. In conclusion, genetic removal of A(2B) adenosine receptors in mice leads to inhibition of allergen-induced chronic pulmonary inflammation and airway remodeling. These findings are in agreement with previous pharmacologic studies suggesting a deleterious role for A(2B) receptor signaling in chronic lung inflammation.
Project description:Extracellular adenosine triphosphate (ATP) is known to boost immune responses in the tumor microenvironment but might also contribute directly to cancer cell death. CD39/ENTPD1 is the dominant ectonucleotidase expressed by endothelial cells and regulatory T cells and catalyzes the sequential hydrolysis of ATP to AMP that is further degraded to adenosine by CD73/ecto-5'-nucleotidase. We have previously shown that deletion of Cd39 results in decreased growth of transplanted tumors in mice, as a result of both defective angiogenesis and heightened innate immune responses (secondary to loss of adenosinergic immune suppression). Whether alterations in local extracellular ATP and adenosine levels as a result of CD39 bioactivity directly affect tumor growth and cytotoxicity has not been investigated to date. We show here that extracellular ATP exerts antitumor activity by directly inhibiting cell proliferation and promoting cancer cell death. ATP-induced antiproliferative effects and cell death are, in large part, mediated through P2X(7) receptor signaling. Tumors in Cd39 null mice exhibit increased necrosis in association with P2X(7) expression. We further demonstrate that exogenous soluble NTPDase, or CD39 expression by cocultured liver sinusoidal endothelial cells, stimulates tumor cell proliferation and limits cell death triggered by extracellular ATP. Collectively, our findings indicate that local expression of CD39 directly promotes tumor cell growth by scavenging extracellular ATP. Pharmacological or targeted inhibition of CD39 enzymatic activity may find utility as an adjunct therapy in cancer management.
Project description:To provide a better understanding of the relationship between primary tumor growth rates and metastatic burden, we present a method that bridges tumor growth dynamics at the population level, extracted from the SEER database, to those at the tissue level. Specifically, with this method, we are able to relate estimates of tumor growth rates and metastatic burden derived from a population-level model to estimates of the primary tumor vascular response and the circulating tumor cell (CTC) fraction derived from a tissue-level model. Variation in the population-level model parameters produces differences in cancer-specific survival and cure fraction. Variation in the tissue-level model parameters produces different primary tumor dynamics that subsequently lead to different growth dynamics of the CTCs. Our method to bridge the population and tissue scales was applied to lung and breast cancer separately, and the results were compared. The population model suggests that lung tumors grow faster and shed a significant number of lethal metastatic cells at small sizes, whereas breast tumors grow slower and do not significantly shed lethal metastatic cells until becoming larger. Although the tissue-level model does not explicitly model the metastatic population, we are able to disengage the direct dependency of the metastatic burden on primary tumor growth by introducing the CTC population as an intermediary and assuming dependency. We calibrate the tissue-level model to produce results consistent with the population model while also revealing a more dynamic relationship between the primary tumor and the CTCs. This leads to exponential tumor growth in lung and power law tumor growth in breast. We conclude that the vascular response of the primary tumor is a major player in the dynamics of both the primary tumor and the CTCs, and is significantly different in breast and lung cancer.
Project description:Hypoxic tissue conditions occur during a number of inflammatory diseases and are associated with the breakdown of barriers and induction of proinflammatory responses. At the same time, hypoxia is also known to induce several adaptive and tissue-protective pathways that dampen inflammation and protect tissue integrity. Hypoxia-inducible factors (HIFs) that are stabilized during inflammatory or hypoxic conditions are at the center of mediating these responses. In the past decade, several genes regulating extracellular adenosine metabolism and signaling have been identified as being direct targets of HIFs. Here, we discuss the relationship between inflammation, hypoxia, and adenosine and that HIF-driven adenosine metabolism and signaling is essential in providing tissue protection during inflammatory conditions, including myocardial injury, inflammatory bowel disease, and acute lung injury. We also discuss how the hypoxia-adenosine link can be targeted therapeutically in patients as a future treatment approach for inflammatory diseases.
Project description:Brain tumors remain a great clinical challenge, in part due to their capacity to invade into eloquent, inoperable regions of the brain. In contrast, inflammation in the central nervous system (CNS) due to injuries activates microglia and astrocytes culminating in an astroglial scar that typically "walls-off" the injury site. Here, the hypothesis is tested that targeting peritumoral cells surrounding tumors to activate them via an inflammatory stimulus that recapitulates the sequelae of a traumatic CNS injury, could generate an environment that would wall-off and contain invasive tumors in the brain. Gold nanoparticles coated with inflammatory polypeptides to target stromal cells in close vicinity to glioblastoma (GBM) tumors, in order to activate these cells and stimulate stromal CNS inflammation, are engineered. It is reported that this approach significantly contains tumors in rodent models of GBM relative to control treatments (reduction in tumor volume by over 300% in comparison to controls), by the activation of the innate and adaptive immune response, and by triggering pathways related to cell clustering. Overall, this report outlines an approach to contain invasive tumors that can complement adjuvant interventions for invasive GBM such as radiation and chemotherapy.
Project description:The molecular mechanisms underlying vascular inflammation and associated inflammatory vascular diseases are not well defined. Here we show that endothelial intracellular adenosine and its key regulator adenosine kinase (ADK) play important roles in vascular inflammation. Pro-inflammatory stimuli lead to endothelial inflammation by increasing endothelial ADK expression, reducing the level of intracellular adenosine in endothelial cells, and activating the transmethylation pathway through increasing the association of ADK with S-adenosylhomocysteine (SAH) hydrolase (SAHH). Increasing intracellular adenosine by genetic ADK knockdown or exogenous adenosine reduces activation of the transmethylation pathway and attenuates the endothelial inflammatory response. In addition, loss of endothelial ADK in mice leads to reduced atherosclerosis and affords protection against ischemia/reperfusion injury of the cerebral cortex. Taken together, these results demonstrate that intracellular adenosine, which is controlled by the key molecular regulator ADK, influences endothelial inflammation and vascular inflammatory diseases.The molecular mechanisms underlying vascular inflammation are unclear. Here the authors show that pro-inflammatory stimuli lead to endothelial inflammation by increasing adenosine kinase expression, and that its knockdown in endothelial cells inhibits atherosclerosis and cerebral ischemic injury in mice.
Project description:Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.
Project description:Adenosine is a ubiquitous endogenous modulator with the main function of maintaining cellular and tissue homeostasis in pathological and stress conditions. It exerts its effect through the interaction with four G protein-coupled receptor (GPCR) subtypes referred as A1, A2A, A2B, and A3 adenosine receptors (ARs), each of which has a unique pharmacological profile and tissue distribution. Adenosine is a potent modulator of inflammation, and for this reason the adenosinergic system represents an excellent pharmacological target for the myriad of diseases in which inflammation represents a cause, a pathogenetic mechanism, a consequence, a manifestation, or a protective factor. The omnipresence of ARs in every cell of the immune system as well as in almost all cells in the body represents both an opportunity and an obstacle to the clinical use of AR ligands. This review offers an overview of the cardinal role of adenosine in the modulation of inflammation, showing how the stimulation or blocking of its receptors or agents capable of regulating its extracellular concentration can represent promising therapeutic strategies for the treatment of chronic inflammatory pathologies, neurodegenerative diseases, and cancer.
Project description:Fetal anemia causes rapid and profound changes in cardiac structure and function, stimulating proliferation of the cardiac myocytes, expansion of the coronary vascular tree, and impairing early contraction and relaxation. Although hypoxia-inducible factor-1α is sure to play a role, adenosine, a metabolic byproduct that increases coronary flow and growth, is implicated as a major stimulus for these adaptations. We hypothesized that genes involved in myocardial adenosine signaling would be upregulated in chronically anemic fetuses and that calcium-handling genes would be downregulated. After sterile surgical instrumentation under anesthesia, gestationally timed fetal sheep were made anemic by isovolumetric hemorrhage for 1 wk (16% vs. 35% hematocrit). At 87% of gestation, necropsy was performed to collect heart tissue for PCR and immunohistochemical analysis. Anemia increased mRNA expression levels of adenosine receptors ADORA 1, ADORA2A, and ADORA2B in the left and right ventricles (adenosine receptor ADORA3 was unchanged). In both ventricles, anemia also increased expression of ectonucleoside triphosphate diphosphohydrolase 1 and ecto-5'-nucleotidase. The genes for both equilibrative nucleoside transporters 1 and 2 were expressed more abundantly in the anemic right ventricle but were not different in the left ventricle. Neither adenosine deaminase nor adenosine kinase cardiac levels were significantly changed by chronic fetal anemia. Chronic fetal anemia did not significantly change cardiac mRNA expression levels of the voltage-dependent L-type calcium channel, ryanodine receptor 1, sodium-calcium exchanger, sarcoplasmic/endoplasmic reticulum calcium transporting ATPase 2, phospholamban, or cardiac calsequestrin. These data support local metabolic integration of vascular and myocyte function through adenosine signaling in the anemic fetal heart.