Project description:ObjectiveOPA1 mutations cause protein haploinsufficiency leading to dominant optic atrophy (DOA), an incurable retinopathy with variable severity. Up to 20% of patients also develop extraocular neurological complications. The mechanisms that cause this optic atrophy or its syndromic forms are still unknown. After identifying oxidative stress in a mouse model of the pathology, we sought to determine the consequences of OPA1 dysfunction on redox homeostasis.MethodsMitochondrial respiration, reactive oxygen species levels, antioxidant defenses, and cell death were characterized by biochemical and in situ approaches in both in vitro and in vivo models of OPA1 haploinsufficiency.ResultsA decrease in aconitase activity suggesting an increase in reactive oxygene species and an induction of antioxidant defenses was observed in cortices of a murine model as well as in OPA1 downregulated cortical neurons. This increase is associated with a decline in mitochondrial respiration in vitro. Upon exogenous oxidative stress, OPA1-depleted neurons did not further exhibit upregulated antioxidant defenses but were more sensitive to cell death. Finally, low levels of antioxidant enzymes were found in fibroblasts from patients supporting their role as modifier factors.InterpretationOur study suggests that the pro-oxidative state induced by OPA1 loss may contribute to DOA pathogenesis and that differences in antioxidant defenses can explain the variability in expressivity. Furthermore, antioxidants may be used as therapy as they could prevent or delay DOA symptoms in patients.
Project description:Optic Atrophy 1 (OPA1) gene mutations cause diseases ranging from isolated dominant optic atrophy (DOA) to various multisystemic disorders. OPA1, a large GTPase belonging to the dynamin family, is involved in mitochondrial network dynamics. The majority of OPA1 mutations encodes truncated forms of the protein and causes DOA through haploinsufficiency, whereas missense OPA1 mutations are predicted to cause disease through deleterious dominant-negative mechanisms. We used 3D imaging and biochemical analysis to explore autophagy and mitophagy in fibroblasts from seven patients harbouring OPA1 mutations. We report new genotype-phenotype correlations between various types of OPA1 mutation and mitophagy. Fibroblasts bearing dominant-negative OPA1 mutations showed increased autophagy and mitophagy in response to uncoupled oxidative phosphorylation. In contrast, OPA1 haploinsufficiency was correlated with a substantial reduction in mitochondrial turnover and autophagy, unless subjected to experimental mitochondrial injury. Our results indicate distinct alterations of mitochondrial physiology and turnover in cells with OPA1 mutations, suggesting that the level and profile of OPA1 may regulate the rate of mitophagy.
Project description:This study aims to describe the ophthalmic characteristics of autosomal dominant (AD) WFS1-associated optic atrophy (AD WFS1-OA), and to explore phenotypic differences with dominant optic atrophy (DOA) caused by mutations in the OPA1-gene. WFS1-associated diseases, or 'wolframinopathies', exhibit a spectrum of ocular and systemic phenotypes, of which the autosomal recessive Wolfram syndrome has been the most extensively studied. AD mutations in WFS1 also cause various phenotypical changes including OA. The most common phenotype in AD WFS1-associated disease, the combination of OA and hearing loss (HL), clinically resembles the 'plus' phenotype of DOA. We performed a comprehensive medical record review across tertiary referral centers in the Netherlands and Belgium resulting in 22 patients with heterozygous WFS1 variants. Eighteen (82%) had HL in addition to OA. Diabetes mellitus was found in 7 (32%). Four patients had isolated OA. One patient had an unusual phenotype with anterior chamber abnormalities and malformations of the extremities. Compared to DOA, AD WFS1-OA patients had different color vision abnormalities (red-green vs blue-yellow in DOA), abnormal OPL lamination on macular OCT (absent in DOA), more generalized thinning of the retinal nerve fiber layer, and more reduced and delayed pattern reversal visual evoked potentials.
Project description:Mutations in the opa1 (optic atrophy 1) gene lead to autosomal dominant optic atrophy (ADOA), a hereditary eye disease. This gene encodes the Opa1 protein, a mitochondrial dynamin-related GTPase required for mitochondrial fusion and the maintenance of normal crista structure. The majority of opa1 mutations encode truncated forms of the protein, lacking a complete GTPase domain. It is unclear whether the phenotype results from haploinsufficiency or rather a deleterious effect of truncated Opa1 protein. We studied a heterozygous Opa1 mutant mouse carrying a defective allele with a stop codon in the beginning of the GTPase domain at residue 285, a mutation that mimics human pathological mutations. Using an antibody raised against an N-terminal portion of Opa1, we found that the level of wild-type protein was decreased in the mutant mice, as predicted. However, no truncated Opa1 protein was expressed. In embryonic fibroblasts isolated from the mutant mice, this partial loss of Opa1 caused mitochondrial respiratory deficiency and a selective loss of respiratory Complex IV subunits. Furthermore, partial Opa1 deficiency resulted in a substantial resistance to endoplasmic reticulum stress-induced death. On the other hand, the enforced expression of truncated Opa1 protein in cells containing normal levels of wild-type protein did not cause mitochondrial defects. Moreover, cells expressing the truncated Opa1 protein showed reduced Bax activation in response to apoptotic stimuli. Taken together, our results exclude deleterious dominant-negative or gain-of-function mechanisms for this type of Opa1 mutation and affirm haploinsufficiency as the mechanism underlying mitochondrial dysfunction in ADOA.
Project description:Mitochondrial quality control is fundamental to all neurodegenerative diseases, including the most prominent ones, Alzheimer's Disease and Parkinsonism. It is accomplished by mitochondrial network dynamics - continuous fission and fusion of mitochondria. Mitochondrial fission is facilitated by DRP1, while MFN1 and MFN2 on the mitochondrial outer membrane and OPA1 on the mitochondrial inner membrane are essential for mitochondrial fusion. Mitochondrial network dynamics are regulated in highly sophisticated ways by various different posttranslational modifications, such as phosphorylation, ubiquitination, and proteolytic processing of their key-proteins. By this, mitochondria process a wide range of different intracellular and extracellular parameters in order to adapt mitochondrial function to actual energetic and metabolic demands of the host cell, attenuate mitochondrial damage, recycle dysfunctional mitochondria via the mitochondrial autophagy pathway, or arrange for the recycling of the complete host cell by apoptosis. Most of the genes coding for proteins involved in this process have been associated with neurodegenerative diseases. Mutations in one of these genes are associated with a neurodegenerative disease that originally was described to affect retinal ganglion cells only. Since more and more evidence shows that other cell types are affected as well, we would like to discuss the pathology of dominant optic atrophy, which is caused by heterozygous sequence variants in OPA1, in the light of the current view on OPA1 protein function in mitochondrial quality control, in particular on its function in mitochondrial fusion and cytochrome C release. We think OPA1 is a good example to understand the molecular basis for mitochondrial network dynamics.
Project description:BACKGROUND: Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported in ADOA, the frequency of OPA1 genomic rearrangements in Denmark, where ADOA has a high prevalence, is unknown. The aim of the study was to identify copy number variations in OPA1 in Danish ADOA patients. METHODS: Forty unrelated ADOA patients, selected from a group of 100 ADOA patients as being negative for OPA1 point mutations, were tested for genomic rearrangements in OPA1 by multiplex ligation probe amplification (MLPA). When only one probe was abnormal results were confirmed by additional manually added probes. Segregation analysis was performed in families with detected mutations when possible. RESULTS: Ten families had OPA1 deletions, including two with deletions of the entire coding region and eight with intragenic deletions. Segregation analysis was possible in five families, and showed that the deletions segregated with the disease. CONCLUSION: Deletions in the OPA1 gene were found in 10 patients presenting with phenotypic autosomal dominant optic neuropathy. Genetic testing for deletions in OPA1 should be offered for patients with clinically diagnosed ADOA and no OPA1 mutations detected by DNA sequencing analysis.
Project description:A clinical and genetic study was conducted with pediatric patients and their relatives with optic atrophy 1 (OPA1) mutations to establish whether there is a genotype-phenotype correlation among the variants detected within and between families. Eleven children with a confirmed OPA1 mutation were identified during the study period. The main initial complaint was reduced visual acuity (VA), present in eight patients of the cohort. Eight of eleven patients had a positive family history of optic atrophy. The mean visual acuity at the start of the study was 0.40 and 0.44 LogMAR in the right and left eye, respectively. At the end of the study, the mean visual acuity was unchanged. Optical coherence tomography during the first visit showed a mean retinal nerve fiber layer thickness of 81.6 microns and 80.5 microns in the right and left eye, respectively; a mean ganglion cell layer of 52.5 and 52.4 microns, respectively, and a mean central macular thickness of 229.5 and 233.5 microns, respectively. The most common visual field defect was a centrocecal scotoma, and nine out of eleven patients showed bilateral temporal disc pallor at baseline. Sequencing of OPA1 showed seven different mutations in the eleven patients, one of which, NM_130837.3: c.1406_1407del (p.Thr469LysfsTer16), has not been previously reported. Early diagnosis of dominant optic atrophy is crucial, both for avoiding unnecessary consultations and/or treatments and for appropriate genetic counseling.
Project description:PURPOSE:Autosomal dominant optic atrophy (DOA) is a major cause of visual impairment in young adults that is characterized by selective retinal ganglion cell loss. To define the prevalence and natural history of this optic nerve disorder, we performed a population-based epidemiologic and molecular study of presumed DOA cases in the north of England. DESIGN:Case series. PARTICIPANTS:Seventy-six affected probands with a clinical diagnosis of DOA were identified from our neuro-ophthalmology and neurogenetics database. METHODS:OPA1 genetic testing was performed using a polymerase chain reaction-based sequencing strategy. OPA1-negative cases were then screened for large-scale OPA1 rearrangements and OPA3 mutations. Additional affected family members identified through contact tracing were examined, and longitudinal visual data were analyzed. MAIN OUTCOME MEASURES:The prevalence and molecular characteristics of DOA in the north of England. Visual function and disease progression among patients with OPA1-positive mutations. RESULTS:The detection rate of OPA1 mutations was 57.6% among probands with a positive family history of optic atrophy (19/33) and 14.0% among singleton cases (6/43). Approximately two thirds of our families with DOA harbored OPA1 mutations (14/22, 63.6%), and 5 novel OPA1 mutations were identified. Only 1 family carried a large-scale OPA1 rearrangement, and no OPA3 mutations were found in our optic atrophy cohort. The minimum point prevalence of DOA in the north of England was 2.87 per 100,000 (95% confidence interval [CI], 2.54-3.20), or 2.09 per 100,000 (95% CI, 1.95-2.23) when only OPA1-positive cases were considered. Snellen visual acuity varied markedly between OPA1-positive cases with a mean of 20/173 (range 20/20 to hand movements), and visual function worsened in 67.4% of patients during follow-up. The mean rate of visual loss was 0.032 logarithm of the minimum angle of resolution per year, but some patients experienced faster visual decline (range = 0-0.171 logarithm of the minimum angle of resolution/year). OPA1 missense mutations were associated with a significantly worse visual outcome compared with other mutational subtypes (P=0.0001). CONCLUSIONS:Dominant optic atrophy causes significant visual morbidity and affects at least 1 in 35,000 of the general population.