Project description:CD1d-restricted invariant NKT (iNKT) cells play a critical role in tumor immunity. However, the scarcity and limited persistence restricts their development and clinical application. Here, we demonstrated that iNKT cells could be efficiently expanded using modified cytokines combination from peripheral blood mononuclear cells. Introduction of IL-21 significantly increased the frequency of CD62L-positive memory-like iNKT cells. iNKT cells armoring with B7H3-targeting second generation CAR and IL-21 showed potent tumor cell killing activity. Moreover, co-expression of IL-21 promoted the activation of Stat3 signaling and reduced the expression of exhaustion markers in CAR-iNKT cells in vitro. Most importantly, IL-21-arming significantly prolonged B7H3 CAR-iNKT cell proliferation and survival in vivo, thus improving their therapeutic efficacy in mouse renal cancer xerograph models without observed cytokine-related adverse events. In summary, these results suggest that B7H3 CAR-iNKT armored with IL-21 is a promising therapeutic strategy for cancer treatment.
Project description:Chimeric antigen receptor (CAR) T cell therapy has shown limited efficacy for the management of solid tumor malignancies. In ovarian cancer, this is in part due to an immunosuppressive cytokine and cellular tumor microenvironment which suppresses adoptively transferred T cells. We engineered an armored CAR T cell capable of constitutive secretion of IL-12, and delineate the mechanisms via which these CAR T cells overcome a hostile tumor microenvironment. In this report, we demonstrate enhanced proliferation, decreased apoptosis and increased cytotoxicity in the presence of immunosuppressive ascites. In vivo, we show enhanced expansion and CAR T cell antitumor efficacy, culminating in improvement in survival in a syngeneic model of ovarian peritoneal carcinomatosis. Armored CAR T cells mediated depletion of tumor associated macrophages and resisted endogenous PD-L1-induced inhibition. These findings highlight the role of the inhibitory microenvironment and how CAR T cells can be further engineered to maintain efficacy.
Project description:Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.
Project description:Chimeric antigen receptor (CAR) T-cell therapy engineers T-cells to express a synthetic receptor which redirects effector function to the tumor, to improve efficacy and reduce toxicities associated with conventional treatments, such as radiotherapy and chemotherapy. This approach has proved effective in treating hematological malignancies; however, the same effects have not been observed in solid tumors. The immunosuppressive tumor microenvironment (TME) creates a significant barrier to solid tumor efficacy and reduces the anti-cancer activity of endogenous tumor-resident immune cells, enabling cancer progression. In recent years, researchers have attempted to enhance CAR T-cell function in the TME by engineering the cells to express various proteins alongside the CAR. Examples of this engineering include inducing CAR T-cells to secrete cytokines or express cytokine receptors to modulate the cytokine milieu of the TME. Alternatively, the CAR T-cell may secrete antibody-like proteins to target a range of tumor antigens. Collectively, these methods are termed armored CAR T-cell therapy, and in this review, we will discuss the range of armored CAR T-cell approaches which have been investigated to date.
Project description:Prostate cancer (PCa) is one of the main causes of cancer-related death in men. In the present immunotherapy era, several immunotherapeutic agents have been evaluated in PCa with poor results, possibly due to its low mutational burden. The recent development of chimeric antigen receptor (CAR)-T cell therapy redirected against cancer-specific antigens would seem to provide the means for bypassing immune tolerance mechanisms. CAR-T cell therapy has proven effective in eradicating hematologic malignancies and the challenge now is to obtain the same degree of in solid tumors, including PCa. In this study we review the principles that have guided the engineering of CAR-T cells and the specific prostatic antigens identified as possible targets for immunological and non-immunological therapies. We also provide a state-of-the-art overview of CAR-T cell therapy in PCa, defining the key obstacles to its development and underlining the mechanisms used to overcome these barriers. At present, although there are still many unanswered questions regarding CAR-T cell therapy, there is no doubt that it has the potential to become an important treatment option for urological malignancies.
Project description:Six-transmembrane epithelial antigen of the prostate-2 (STEAP2) expression is increased in prostate cancer when compared to normal prostate, suggesting STEAP2 may drive prostate cancer progression. This study aimed to establish the functional role of STEAP2 in prostate tumourigenesis and evaluate if its knockdown resulted in reduced invasive potential of prostate cancer cells. PC3 and LNCaP cells were transfected with STEAP2 siRNA and proliferation, migration, invasion and gene expression analyses were performed. STEAP2 immunohistochemistry was applied to assess the protein expression and localisation according to Gleason score in 164 prostate cancer patients. Invasion significantly decreased in both cell lines following STEAP2 knockdown. PC3 proliferation and migration capacity significantly reduced, while LNCaP cell morphology and growth characteristics were altered. Additionally, STEAP2 downstream targets associated with driving invasion were identified as MMP3, MMP10, MMP13, FGFR4, IL1β, KiSS1 and SERPINE1 in PC3 cells and, MMP7 in LNCaP cells, with CD82 altered in both. In patient tissues, STEAP2 expression was significantly increased in prostate cancer samples and this significantly correlated with Gleason score. These data demonstrate that STEAP2 drives aggressive prostate cancer traits by promoting proliferation, migration and invasion and significantly influencing the transcriptional profile of ten genes underlying the metastatic cascade.
Project description:Natural killer (NK) cells are innate lymphocytes recognized for their important role against tumor cells. NK cells expressing chimeric antigen receptors (CARs) have enhanced effector function against various type of cancer and are attractive contenders for the next generation of cancer immunotherapies. However, a number of factors have hindered the application of NK cells for cellular therapy, including their poor in vitro growth kinetics and relatively low starting percentages within the mononuclear cell fraction of peripheral blood or cord blood (CB). To overcome these limitations, we genetically-engineered human leukocyte antigen (HLA)-A- and HLA-B- K562 cells to enforce the expression of CD48, 4-1BBL, and membrane-bound IL-21 (mbIL21), creating a universal antigen presenting cell (uAPC) capable of stimulating their cognate receptors on NK cells. We have shown that uAPC can drive the expansion of both non-transduced (NT) and CAR-transduced CB derived NK cells by >900-fold in 2 weeks of co-culture with excellent purity (>99.9%) and without indications of senescence/exhaustion. We confirmed that uAPC-expanded research- and clinical-grade NT and CAR-transduced NK cells have higher metabolic fitness and display enhanced effector function against tumor targets compared to the corresponding cell fractions cultured without uAPCs. This novel approach allowed the expansion of highly pure GMP-grade CAR NK cells at optimal cell numbers to be used for adoptive CAR NK cell-based cancer immunotherapy.
Project description:Chimeric antigen receptor (CAR) T cells have demonstrated promising efficacy, particularly in hematologic malignancies. One challenge regarding CAR T cells in solid tumors is the immunosuppressive tumor microenvironment (TME), characterized by high levels of multiple inhibitory factors, including transforming growth factor (TGF)-β. We report results from an in-human phase 1 trial of castration-resistant, prostate cancer-directed CAR T cells armored with a dominant-negative TGF-β receptor (NCT03089203). Primary endpoints were safety and feasibility, while secondary objectives included assessment of CAR T cell distribution, bioactivity and disease response. All prespecified endpoints were met. Eighteen patients enrolled, and 13 subjects received therapy across four dose levels. Five of the 13 patients developed grade ≥2 cytokine release syndrome (CRS), including one patient who experienced a marked clonal CAR T cell expansion, >98% reduction in prostate-specific antigen (PSA) and death following grade 4 CRS with concurrent sepsis. Acute increases in inflammatory cytokines correlated with manageable high-grade CRS events. Three additional patients achieved a PSA reduction of ≥30%, with CAR T cell failure accompanied by upregulation of multiple TME-localized inhibitory molecules following adoptive cell transfer. CAR T cell kinetics revealed expansion in blood and tumor trafficking. Thus, clinical application of TGF-β-resistant CAR T cells is feasible and generally safe. Future studies should use superior multipronged approaches against the TME to improve outcomes.
Project description:Cancer stem cells (CSCs) with their self-renewal ability are accepted as cells which initiate tumors. CSCs are regarded as interesting targets for novel anticancer therapeutic agents because of their association with tumor recurrence and resistance to conventional therapies, including radiotherapy and chemotherapy. Chimeric antigen receptor (CAR)-T cells are engineered T cells which express an artificial receptor specific for tumor associated antigens (TAAs) by which they accurately target and kill cancer cells. In recent years, CAR-T cell therapy has shown more efficiency in cancer treatment, particularly regarding blood cancers. The expression of specific markers such as TAAs on CSCs in varied cancer types makes them as potent tools for CAR-T cell therapy. Here we review the CSC markers that have been previously targeted with CAR-T cells, as well as the CSC markers that may be used as possible targets for CAR-T cell therapy in the future. Furthermore, we will detail the most important obstacles against CAR-T cell therapy and suggest solutions.