Project description:Corticospinal excitability is subject to alterations after stroke. While the reversal of these alterations has been proposed as an underlying mechanism for improved walking capacity after gait-specific training, this has not yet been clearly demonstrated. Therefore, the objective of this review is to evaluate the effect of gait-specific training on corticospinal excitability in stroke survivors. We conducted an electronic database search in four databases (i.e., Medline, Embase, CINAHL and Web of Science) in June 2022. Two authors screened in an independent way all the studies and selected those that investigated the effect of gait-specific training on variables such as motor-evoked potential amplitude, motor threshold, map size, latency, and corticospinal silent period in stroke survivors. Nineteen studies investigating the effect of gait-specific training on corticospinal excitability were included. Some studies showed an increased MEP amplitude (7/16 studies), a decreased latency (5/7studies), a decreased motor threshold (4/8 studies), an increased map size (2/3 studies) and a decreased cortical silent period (1/2 study) after gait-specific training. No change has been reported in terms of short interval intracortical inhibition after training. Five studies did not report any significant effect after gait-specific training on corticospinal excitability. The results of this systematic review suggest that gait-specific training modalities can drive neuroplastic adaptation among stroke survivors. However, given the methodological disparity of the included studies, additional clinical trials of better methodological quality are needed to establish conclusions. The results of this review can therefore be used to develop future studies to better understand the effects of gait-specific training on the central nervous system.
Project description:Stroke survivors commonly face challenges such as reduced physical activity and cardiorespiratory fitness (CRF) as well as balance and gait impairments, exacerbating their disability. While high-intensity exercise interventions have demonstrated some potential, their effects on these items remain uncertain. Therefore, our study aimed to investigate the impact of high-intensity training protocols on CRF, gait ability, and balance in stroke survivor populations. Two independent investigators systematically searched five databases for relevant RCTs following the PICO model. Through a systematic review of 25 RCTs published up to 31 May 2023, including adult first-stroke survivors, comparing high-intensity exercise training versus low-to-mild or no exercises, we evaluated outcomes such as the Six-Minute Walking Test (6 MWT), peak oxygen uptake (VO2peak), Ten-Meter Walk Test (10 MWT), Berg Balance Scale (BBS), and Timed Up and Go test (TUG). The protocol was registered in PROSPERO (registration number CRD42023456773). Meta-analyses indicated significant enhancements in CRF, as measured by 6 MWT and VO2peak, following high-intensity exercise interventions. However, no significant differences were observed in BBS, 10 MWT, and TUG. Our findings underscore the potential of high-intensity exercise interventions in ameliorating CRF among stroke survivors, although further research involving standardized protocols and long-term follow-ups is imperative to optimize rehabilitation outcomes.
Project description:BackgroundGrowing evidence suggests that gait training can improve stroke patients' balance outcomes. However, it remains unclear which type of gait training is more effective in improving certain types of balance outcomes in patients with stroke. Thus, this network meta-analysis (NMA) included six types of gait training (treadmill, body-weight-supported treadmill, virtual reality gait training, robotic-assisted gait training, overground walking training, and conventional gait training) and four types of balance outcomes (static steady-state balance, dynamic steady-state balance, proactive balance, and balance test batteries), aiming to compare the efficacy of different gait training on specific types of balance outcomes in stroke patients and determine the most effective gait training.MethodWe searched PubMed, Embase, Medline, Web of Science, and Cochrane Library databases from inception until 25 April 2022. Randomized controlled trials (RCTs) of gait training for the treatment of balance outcomes after stroke were included. RoB2 was used to assess the risk of bias in the included studies. Frequentist random-effects network meta-analysis (NMA) was used to evaluate the effect of gait training on four categories of balance outcomes.ResultA total of 61 RCTs from 2,551 citations, encompassing 2,328 stroke patients, were included in this study. Pooled results showed that body-weight-support treadmill (SMD = 0.30, 95% CI [0.01, 0.58]) and treadmill (SMD = 0.25, 95% CI [0.00, 0.49]) could improve the dynamic steady-state balance. Virtual reality gait training (SMD = 0.41, 95% CI [0.10, 0.71]) and body-weight-supported treadmill (SMD = 0.41, 95% CI [0.02, 0.80]) demonstrated better effects in improving balance test batteries. However, none of included gait training showed a significant effect on static steady-state balance and proactive balance.ConclusionGait training is an effective treatment for improving stroke patients' dynamic steady-state balance and balance test batteries. However, gait training had no significant effect on static steady-state balance and proactive balance. To achieve maximum efficacy, clinicians should consider this evidence when recommending rehabilitation training to stroke patients. Considering body-weight-supported treadmill is not common for chronic stroke patients in clinical practice, the treadmill is recommended for those who want to improve dynamic steady-state balance, and virtual reality gait training is recommended for those who want to improve balance test batteries.LimitationMissing evidence in relation to some types of gait training is supposed to be taken into consideration. Moreover, we fail to assess reactive balance in this NMA since few included trials reported this outcome.Systematic review registrationPROSPERO, identifier CRD42022349965.
Project description:Purpose: Increased gait variability in stroke survivors indicates poor dynamic balance and poses a heightened risk of falling. Two primary motor impairments linked with impaired gait are declines in movement precision and strength. The purpose of the study is to determine whether force-control training or strength training is more effective in reducing gait variability in chronic stroke survivors. Methods: Twenty-two chronic stroke survivors were randomized to force-control training or strength training. Participants completed four training sessions over 2 weeks with increasing intensity. The force-control group practiced increasing and decreasing ankle forces while tracking a sinusoid. The strength group practiced fast ankle motor contractions at a percentage of their maximal force. Both forms of training involved unilateral, isometric contraction of the paretic, and non-paretic ankles in plantarflexion and dorsiflexion. Before and after the training, we assessed gait variability as stride length and stride time variability, and gait speed. To determine the task-specific effects of training, we measured strength, accuracy, and steadiness of ankle movements. Results: Stride length variability and stride time variability reduced significantly after force-control training, but not after strength training. Both groups showed modest improvements in gait speed. We found task-specific effects with strength training improving plantarflexion and dorsiflexion strength and force control training improving motor accuracy and steadiness. Conclusion: Force-control training is superior to strength training in reducing gait variability in chronic stroke survivors. Improving ankle force control may be a promising approach to rehabilitate gait variability and improve safe mobility post-stroke.
Project description:IntroductionGait ability is often cited by stroke survivors. Robot-assisted gait training (RAGT) can help stroke patients with lower limb motor impairment regain motor coordination.Evidence acquisitionPubMed, Cochrane Library, Embase were systematically searched until September 2023, to identify randomized controlled trials presenting: stroke survivors as participants; RAGT as intervention; conventional rehabilitation as a comparator; gait assessment, through scales or quantitative parameters, as outcome measures.Evidence synthesisTwenty-seven publications involving 1167 patients met the inclusion criteria. Meta-analysis showed no significant differences in speed, cadence, spatial symmetry, and changes in joint mobility angles between the RAGT group and the control group. In addition, RAGT was associated with changes in affected side step length (SMD=0.02, 95% CI: 0.01, 0.03; P<0.0001), temporal symmetry (SMD=-0.38, 95% CI: -0.6, -0.16; P=0.0006], Six-Minute Walk Test (SMD=25.14, 95% CI: 10.19, 40.09; P=0.0010] and Functional Ambulation Categories (SMD=0.32, 95% CI: 0.01, 0.63; P=0.04). According to the PEDro scale, 19 (70.4%) studies were of high quality and eight were of moderate quality (29.6%).ConclusionsTaken together, the review synthesis showed that RAGT might have a potential role in the recovery of walking dysfunction after stroke. However, its superiority over conventional rehabilitation requires further research. Additionally, it may provide unexpected benefits that the effects of RAGT with different types or treatment protocols were further compared.
Project description:BackgroundBalance impairment is a common disability in post-stroke survivors, leading to reduced mobility and increased fall risk. Robotic gait training (RAGT) is largely used, along with traditional training. There is, however, no strong evidence about RAGT superiority, especially on balance. This study aims to determine RAGT efficacy on balance of post-stroke survivors.MethodsPubMed, Cochrane Library, and PeDRO databases were investigated. Randomized clinical trials evaluating RAGT efficacy on post-stroke survivor balance with Berg Balance Scale (BBS) or Timed Up and Go test (TUG) were searched. Meta-regression analyses were performed, considering weekly sessions, single-session duration, and robotic device used.ResultsA total of 18 trials have been included. BBS pre-post treatment mean difference is higher in RAGT-treated patients, with a pMD of 2.17 (95% CI 0.79; 3.55). TUG pre-post mean difference is in favor of RAGT, but not statistically, with a pMD of -0.62 (95%CI - 3.66; 2.43). Meta-regression analyses showed no relevant association, except for TUG and treatment duration (β = -1.019, 95% CI - 1.827; -0.210, p-value = 0.0135).ConclusionsRAGT efficacy is equal to traditional therapy, while the combination of the two seems to lead to better outcomes than each individually performed. Robot-assisted balance training should be the focus of experimentation in the following years, given the great results in the first available trials. Given the massive heterogeneity of included patients, trials with more strict inclusion criteria (especially time from stroke) must be performed to finally define if and when RAGT is superior to traditional therapy.
Project description:Restoration of balance control is a primary focus of rehabilitation after a stroke. The study developed a gait perturbation, treadmill-based, balance assessment protocol and demonstrated that it can be used to quantify improvements in reactive balance responses among individuals post-stroke. The protocol consists of a sequence of fifteen 90-second treadmill walking trials, with a single perturbation applied during the middle third of each trial. Gait was perturbed by rapid acceleration-deceleration of the treadmill belt at mid-stance of the unaffected leg during a randomly selected gait cycle. The initial perturbation magnitude was based on the participant's maximum walking speed and increased or decreased in each trial, based on success or failure of recovery, as determined from an instrumented harness. The protocol was used before and after a 10-week period of therapy in twenty-four stroke survivors. Outcomes included maximum recoverable perturbation (MRP), self-selected gait speed, levels progressed through the algorithm, and falls versus recoveries.Participants were able to take recovery steps in response to the perturbation. Twelve participants completed the full assessment protocol before and after the therapeutic intervention. After the intervention, they had fewer falls and more recoveries (p < 0.001), progressed through more algorithm levels (p = 0.043), had a higher MRP (p = 0.005), and had higher gait speeds. The protocol was found to be feasible in stroke survivors with moderate gait deficits. The data supports the conclusion that this protocol can be used in clinical research to quantify improvements in balance during walking.
Project description:ObjectiveThis study aims to evaluate the effect of sling exercise training (SET) on balance in patients with stroke.MethodsPubMed, Cochrane Library, Ovid LWW, CBM, CNKI, WanFang, and VIP databases were searched for randomized controlled trials of the effect of SET on balance in patients with stroke. The study design and participants were subjected to metrological analysis. Berg balance Scale (BBS), Barthel index score (BI), and Fugl-Meyer Assessment (FMA) were used as independent parameters for evaluating balance function, activities of daily living(ADL) and motor function after stroke respectively, and were subjected to meta-analysis by RevMan5.3 software.ResultsNine studies with 460 participants were analyzed. Results of meta-analysis showed that the SET treatment combined with conventional rehabilitation was superior to conventional rehabilitation treatments, with increased degrees of BBS (WMD = 3.81, 95% CI [0.15, 7.48], P = 0.04), BI (WMD = 12.98, 95% CI [8.39, 17.56], P < 0.00001), and FMA (SMD = 0.76, 95% CI [0.41, 1.11], P < 0.0001).ConclusionBased on limited evidence from 9 trials, the SET treatment combined with conventional rehabilitation was superior to conventional rehabilitation treatments, with increased degrees of BBS, BI and FMA, So the SET treatment can improvement of balance function after stroke, but the interpretation of our findings is required to be made with caution due to limitations in included trials such as small sample sizes and the risk of bias. Therefore, more multi-center and large-sampled randomized controlled trials are needed to confirm its clinical applications.
Project description:ObjectiveA systematic review is conducted to determine the effect of traditional Chinese exercise for patients with stroke.MethodsStudies are obtained from PubMed, Embase, Cochrane Library, EBSCO, Web of Science, and CNKI. Only randomized controlled trials were left to evaluate the effects of traditional Chinese exercise for patients with stroke, and with no limits on study data or language. The primary outcome was the Berg balance score (BBS), Functional walking scale. And a random-effects model was used to calculate the pooled mean difference (MD) with 95% confidence interval (CI).ResultsA total of 9 studies on 820 participants conform to the inclusion criteria, whereas eight studies on 704 participants are used as data sources for the meta-analysis, all trials were published between 2004 and 2013. The BBS indicates that the efficacy of traditional Chinese exercise on balance of patients with stroke is better than that of other training or no training in short term [MD (95%CI) = 11.85 [5.41, 18.30], P < 0.00001]. And the short physical performance battery, Functional walking scale, limit of stability were observed significant differences on balance (p<0.05) and gait (p<0.05) between traditional Chinese exercise and other exercises or no exercise. In addition, there is an article showed that some other form (physiotherapy exercises focused on balance) significantly improved balance ability for stroke patients compared to tai chi chuan practice (Berg test = 0.01, Romberg, and standing on one leg).ConclusionIn our meta analysis, the positive findings of this study suggest traditional Chinese exercise has beneficial effects on the balance ability in short term. However, we drew the conclusion according to the extreme heterogeneity, and evidence of better quality and from a larger sample size is required. Because of the inconsistent outcomes, there are short of enough good evidence for patients with stroke to prove the effects of traditional Chinese exercise on gait.Systematic review registrationhttp://www.crd.york.ac.uk/PROSPERO PROSPERO registration number: CRD42013006474.
Project description:Objective: The purpose of this study was to determine the effects of underwater treadmill gait training with water-jet resistance and underwater treadmill gait training with ankle weights on balance and gait abilities in chronic stroke patients. Methods: Twenty-two inpatients and outpatients with stroke-induced impairments were randomly assigned into two groups: an underwater treadmill gait training with water-jet resistance group (n = 11) and an underwater treadmill gait training with ankle weights group (n = 11). Participants received conventional physical therapy for 30 min and underwater treadmill gait training with water-jet resistance or ankle weights for 30 min. Intervention was performed 5 days a week for 4 weeks. The Balance System SD was used to assess static and dynamic balance. The GAITRite system was used to assess gait velocity, cadence, step length, stride length, and swing phase. All measurements were performed at the beginning of the study and 4 weeks after the intervention. Results: The water-jet resistance group and ankle weights group showed significant improvement in static balance (P < 0.00 vs. P = 0.01), dynamic balance (P < 0.00 vs. P = 0.57), gait velocity (P < 0.00 vs. P = 0.037), cadence (P < 0.00 vs. P = 0.001), step length (P < 0.00 vs. P = 0.003), stride length (P < 0.00 vs. P = 0.023), and swing phase (P < 0.00 vs. P < 0.00). However, the static and dynamic balance ability score (P < 0.00), gait velocity (P < 0.00), cadence (P < 0.00), step length (P < 0.00), stride length (P < 0.00), and swing phase (P = 0.023) in the group that received underwater treadmill gait training with water-jet resistance improved more than in the group that received underwater treadmill gait training with ankle weights. Conclusions: Our results demonstrated that underwater treadmill gait training with water-jet resistance is effective in improving static and dynamic balance as well as gait abilities in chronic stroke patients. Thus, training using underwater treadmill gait training with water-jet resistance may be useful in facilitating active rehabilitation in chronic stroke patients.