Project description:Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.
Project description:Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can eventually lead to kidney failure. Studies investigating the role of primary cilia and polycystins have significantly advanced our understanding of the pathogenesis of PKD. This review will present clinical and basic aspects of ADPKD, review current concepts of PKD pathogenesis, evaluate potential therapeutic targets, and highlight challenges for future clinical studies.
Project description:Chronic kidney disease affects ~10% of people worldwide and there are no disease modifying therapeutics that address the underlying cause of any form of kidney disease. Genome wide association studies have identified the G1 and G2 variants in the apolipoprotein L1 (APOL1) gene as major contributors to a subtype of proteinuric kidney disease now referred to as APOL1-mediated kidney disease (AMKD). We hypothesized that inhibition of APOL1 could have therapeutic potential for this genetically-defined form of kidney disease. Here we describe the development of preclinical assays and the discovery of potent and specific APOL1 inhibitors with drug-like properties. We provide evidence that APOL1 channel activity drives podocyte injury and that inhibition of this activity stops APOL1-mediated cell death and kidney damage in a transgenic mouse model. These preclinical data, combined with clinical data from our previously published phase 2 proof-of-concept study, support the potential of APOL1 channel inhibition for the treatment of AMKD.
Project description:IntroductionCoding variants in apolipoprotein L-1 (APOL1) are associated with an increased risk of end-stage kidney disease (ESRD) in African American individuals under a recessive model of inheritance. The effect of the APOL1 risk alleles on kidney disease has been observed in studies in African American and African populations. Despite the 130 million individuals of recent African ancestry in South America, the impact of APOL1 has not been explored.MethodsIn this case-control study, we tested APOL1 genotype in 106 Brazilian HD (hemodialysis) patients with African ancestry and compared risk allele frequency with 106 healthy first-degree relatives. The association of risk alleles and ESRD was calculated with a linear mixed model and was adjusted for relatedness and additional confounders. In a broader survey, the age of dialysis initiation and APOL1 variants were analyzed in 274 HD patients.ResultsTwo APOL1 risk alleles were 10 times more common in patients with ESRD than in controls (9.4% vs. 0.9%; odds ratio [OR]: 10.95, SE = 1.49, P = 0.0017). Carriers of 2 risk alleles initiated dialysis 12 years earlier than patients with zero risk alleles.ConclusionThe APOL1 risk variants were less frequent in dialysis patients of African ancestry in Brazil than in the United States. Nonetheless, carriers of 2 risk variants had 10-fold higher odds of ESRD. Age of dialysis initiation was markedly lower in 2-risk allele carriers, suggesting a more aggressive disease phenotype. The Brazilian population represents an opportunity to identify different sets of genetic modifiers or environmental triggers that might be present in more extensively studied populations.
Project description:The relationship between commonly occurring genetic variants (G1 and G2) in the APOL1 gene in African Americans and different disease traits, such as kidney disease, cardiovascular disease, and pre-eclampsia, remains the subject of controversy. Here we took a genotype-first approach, a phenome-wide association study, to define the spectrum of phenotypes associated with APOL1 high-risk variants in 1,837 African American participants of Penn Medicine Biobank and 4,742 African American participants of Vanderbilt BioVU. In the Penn Medicine Biobank, outpatient creatinine measurement-based estimated glomerular filtration rate and multivariable regression models were used to evaluate the association between high-risk APOL1 status and renal outcomes. In meta-analysis of both cohorts, the strongest phenome-wide association study associations were for the high-risk APOL1 variants and diagnoses codes were highly significant for "kidney dialysis" (odds ratio 3.75) and "end stage kidney disease" (odds ratio 3.42). A number of phenotypes were associated with APOL1 high-risk genotypes in an analysis adjusted only for demographic variables. However, no associations were detected with non-renal phenotypes after controlling for chronic/end stage kidney disease status. Using calculated estimated glomerular filtration rate -based phenotype analysis in the Penn Medicine Biobank, APOL1 high-risk status was associated with prevalent chronic/end stage kidney disease /kidney transplant (odds ratio 2.27, 95% confidence interval 1.67-3.08). In high-risk participants, the estimated glomerular filtration rate was 15.4 mL/min/1.73m2; significantly lower than in low-risk participants. Thus, although APOL1 high-risk variants are associated with a range of phenotypes, the risks for other associated phenotypes appear much lower and in our dataset are driven by a primary effect on renal disease.
Project description:In patients of African ancestry, genetic variants in APOL1, which encodes apolipoprotein L1, associate with the nondiabetic kidney diseases, focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy (HIVAN), and hypertensive nephropathy. Understanding the renal localization of APOL1 may provide clues that will ultimately help elucidate the mechanisms by which APOL1 variants promote nephropathy. Here, we used immunohistology to examine APOL1 localization in normal human kidney sections and in biopsies demonstrating either FSGS (n = 8) or HIVAN (n = 2). Within normal glomeruli, APOL1 only localized to podocytes. Compared with normal glomeruli, fewer cells stained for APOL1 in FSGS and HIVAN glomeruli, even when expression of the podocyte markers GLEPP1 and synaptopodin appeared normal. APOL1 localized to proximal tubular epithelia in normal kidneys, FSGS, and HIVAN. We detected APOL1 in the arteriolar endothelium of normal and diseased kidney sections. Unexpectedly, in both FSGS and HIVAN but not normal kidneys, the media of medium artery and arterioles contained a subset of α-smooth muscle actin-positive cells that stained for APOL1. Comparing the renal distribution of APOL1 in nondiabetic kidney disease to normal kidney suggests that a previously unrecognized arteriopathy may contribute to disease pathogenesis in patients of African ancestry.
Project description:People of recent African ancestry develop kidney disease at much higher rates than most other groups. Two specific coding variants in the Apolipoprotein-L1 gene APOL1 termed G1 and G2 are the causal drivers of much of this difference in risk, following a recessive pattern of inheritance. However, most individuals with a high-risk APOL1 genotype do not develop overt kidney disease, prompting interest in identifying those factors that interact with APOL1 We performed an admixture mapping study to identify genetic modifiers of APOL1-associated kidney disease. Individuals with two APOL1 risk alleles and focal segmental glomerulosclerosis (FSGS) have significantly increased African ancestry at the UBD (also known as FAT10) locus. UBD is a ubiquitin-like protein modifier that targets proteins for proteasomal degradation. African ancestry at the UBD locus correlates with lower levels of UBD expression. In cell-based experiments, the disease-associated APOL1 alleles (known as G1 and G2) lead to increased abundance of UBD mRNA but to decreased levels of UBD protein. UBD gene expression inversely correlates with G1 and G2 APOL1-mediated cell toxicity, as well as with levels of G1 and G2 APOL1 protein in cells. These studies support a model whereby inflammatory stimuli up-regulate both UBD and APOL1, which interact in a functionally important manner. UBD appears to mitigate APOL1-mediated toxicity by targeting it for destruction. Thus, genetically encoded differences in UBD and UBD expression appear to modify the APOL1-associated kidney phenotype.
Project description:Stargardt disease (STGD1; MIM 248200) is the most prevalent inherited macular dystrophy and is associated with disease-causing sequence variants in the gene ABCA4 Significant advances have been made over the last 10 years in our understanding of both the clinical and molecular features of STGD1, and also the underlying pathophysiology, which has culminated in ongoing and planned human clinical trials of novel therapies. The aims of this review are to describe the detailed phenotypic and genotypic characteristics of the disease, conventional and novel imaging findings, current knowledge of animal models and pathogenesis, and the multiple avenues of intervention being explored.
Project description:APOL1 risk variants are associated with kidney disease in blacks, but the mechanisms of renal injury associated with APOL1 risk variants are unknown. Because APOL1 is unique to humans and some primates, we created transgenic (Tg) mice using the promoter of nephrin-encoding Nphs1 to express the APOL1 reference sequence (G0) or the G2 risk variant in podocytes, establishing Tg lines with a spectrum of APOL1 expression levels. Podocytes from Tg-G0 and Tg-G2 mice did not undergo necrosis, apoptosis, or autophagic cell death in vivo, even in lines with highly expressed transgenes. Further, Tg-G0 and Tg-G2 mice did not develop kidney pathology, proteinuria, or azotemia as of 300 days of age. However, by 200 days of age, Tg-G2 mice had significantly lower podocyte density than age-matched WT and Tg-G0 mice had, a difference that was not evident at weaning. Notably, a pregnancy-associated phenotype that encompassed eclampsia, preeclampsia, fetal/neonatal deaths, and small litter sizes occurred in some Tg-G0 mice and more severely in Tg-G2 mice. Similar to human placenta, placentas of Tg mice expressed APOL1. Overall, these results suggest podocyte depletion could predispose individuals with APOL1 risk genotypes to kidney disease in response to a second stressor, and add to other published evidence associating APOL1 expression with preeclampsia.