Unknown

Dataset Information

0

Halogen bonding with carbon: directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures.


ABSTRACT: Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In >90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.

SUBMITTER: Vainauskas J 

PROVIDER: S-EPMC10664517 | biostudies-literature | 2023 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Halogen bonding with carbon: directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures.

Vainauskas Jogirdas J   Borchers Tristan H TH   Arhangelskis Mihails M   McCormick McPherson Laura J LJ   Spilfogel Toni S TS   Hamzehpoor Ehsan E   Topić Filip F   Coles Simon J SJ   Perepichka Dmytro F DF   Barrett Christopher J CJ   Friščić Tomislav T  

Chemical science 20231024 45


Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional  ...[more]

Similar Datasets

| S-EPMC9967865 | biostudies-literature
| S-EPMC4547818 | biostudies-literature
| S-EPMC6385366 | biostudies-literature
| S-EPMC11784642 | biostudies-literature
| S-EPMC6720338 | biostudies-literature
| S-EPMC5638094 | biostudies-literature
| S-EPMC6386556 | biostudies-literature
| S-EPMC3993918 | biostudies-other
| S-EPMC10510819 | biostudies-literature
| S-EPMC6534470 | biostudies-literature