Project description:This study explored how genotype, seed color, and seed weight affect major biochemical components in 95 faba bean accessions. Genotype variation significantly affected convicine, total tannin (TTC), total saponin, and total phenol (TPC) contents. Seed color and weight variations affected several parameters, with their interaction significantly affecting convicine, total vicine-convicine content (TVC), TTC, total polyunsaturated fatty acid (PUFA), and antioxidant activities. Genotype interaction with seed weight and seed color also significantly affected convicine, TVC, TPC, oleic acid, linoleic acid, PUFA, and ferric-reducing antioxidant power. Vicine, dietary fiber, total fat, crude protein, palmitic acid, and stearic acid contents remain unaffected by these factors. Multivariate analysis showed that brown and small beans had distinctive characteristics. Overall, this study demonstrated the connection between biochemical components, genotype, and seed traits in faba beans. Therefore, these factors should be considered when choosing faba bean genotypes for use in the food industry and breeding programs.
Project description:Studying the effects of genetic and environmental factors on plant biochemical components helps in selecting the best varieties for the food industry and breeding programs. This study analyzed the nutritional qualities, secondary metabolites, and antioxidant activities of 14 field-grown yardlong beans accessions and how they are affected by differences in pod and seed colors. The analyzed parameters varied significantly among the yardlong bean accessions, with variances ranging from 1.36% in total unsaturated fatty acid content to 51.01% in DPPH• scavenging activity. Accessions YLB4, YLB7, and YLB14 performed the best, showing antioxidant indices of 100.00, 70.10, and 67.88%, respectively. Among these, YLB14 showed a characteristic property, having the highest levels of vitamin C (2.62 mg/g) and omega-6 to omega-3 ratio (2.67). It also had the second highest dietary fiber (21.45%), stearic acid (4.44%), and linoleic acid (40.39%) contents, as well as the lowest thrombogenicity index (0.38). Although cluster and principal component analyses did not clearly separate the yardlong beans based on pod or seed color, analysis of variance revealed that these factors and their interaction had significant effects on total phenol, DPPH• scavenging activity, ABTS•+ scavenging activity, and reducing power. In contrast, the nutritional parameters, except for dietary fiber, were not significantly affected by pod and seed color variations. Therefore, consuming yardlong beans of different pod and seed colors may not affect the overall nutrient intake. In general, this study identified yardlong beans with green pods and black seeds as good sources of antioxidants. Accordingly, further metabolomics and genomics studies are suggested to thoroughly explore their characteristics.
Project description:Legumes and pulses are nutrient-dense foods providing a good source of protein, complex carbohydrates, fiber, vitamins, minerals, and bioactive compounds. To breed a new lineage of beans with specific nutritional and health beneficial purposes, more information on original lineage beans must be obtained. However, data concerning the nutritive compositions, total phenolic contents (TPCs), and health benefits regarding the antioxidant potentials of some original lineage beans in Thailand remain scarce, causing difficulty in decisional selection to breed a new lineage. Thus, this study aimed to examine the nutritional values (proximate compositions, vitamins, and minerals), TPCs, and antioxidant activities of ten original lineage bean cultivars in Glycine, Phaseolus, and Vigna genera from Genebank, Department of Agriculture (DOA), Thailand. The results indicated that beans in the Glycine genus potentially provided higher energy, protein, fat, and calcium contents than other genera, while the Phaseolus genus tended to provide higher carbohydrate and dietary fiber. Specifically, lima bean cultivar '38' exhibited high vitamin B1, and red kidney bean cultivar '112' exhibited high potassium content. Beans in the Vigna genus exhibited high TPCs and antioxidant activities. However, their nutritional compositions were markedly varied. The results of this work could support bean consumption as a feasible alternative diet and be used as a reference for future bean breeding (within the same genera) of a new lineage with particular nutritional requirements and health potentials.
Project description:Legumes, rich in protein, fiber, and micronutrients, are increasingly popular in pulse-based and gluten-free foods despite global consumption stagnating at 21 g/day due to taste, low protein digestibility, anti-nutrients, and long cooking times. Bean resistance to cooking causes textural defects like the hardshell and hard-to-cook phenomena. The pectin-cation-phytate hypothesis explains why soaking beans in sodium salts reduces cooking time by enhancing pectin solubility in water. Gradoli Purgatory beans (GPB), from Italy's Latium region, were malted, reducing phytic acid by 32% and oligosaccharides by 63%. This study evaluated the hardness of cooked GPB seeds in various conditions, including decorticated or malted states, using a modified standard method. Cooking at 98 °C for 7-75 min on an induction hob with a water-to-seed ratio of 4 g/g was tested. Soaking was applied before cooking for conventional seeds only, followed by texture analysis. Conventional GPBs were adequately cooked if their cotyledons disintegrated upon pressing, requiring a force peak of 250 to 220 N and cooking times of 52 to 57 min. Malted, decorticated, and split GPBs cooked similarly to raw decorticated and split ones, with times of 32 and 25 min, respectively. Faster cooking was due to bean coat removal and splitting, not chemical changes. Sodium or potassium carbonate/bicarbonate at 1-2 g/L improved cooking efficiency, with 2 g/L of sodium carbonate reducing cooking time to 13 min. Higher concentrations caused non-uniform cooking. Cooking malted, decorticated, and split GPBs in sodium-carbonated water reduced greenhouse gas emissions from 561 to 368 g CO2e/kg, meeting the demand for eco-friendly and nutritionally enhanced plant protein sources.
Project description:In this study, we aimed to explore the effects of faba bean (Vicia faba L.) on the energy metabolism of grass carp (Ctenopharyngodon idellus). A total of 180 fish (∼2900 g) were randomly assigned to six tanks (2.5 × 2.5 × 1.2 m; 30 individuals per tank) and fed either faba bean (Vicia faba L.) or a commercial diet for 120 days (3% body weight, twice per day). The results showed that faba bean-fed grass carp (FBFG) had significantly lower growth and higher fat accumulation in the mesenteric adipose tissue and hepatopancreas than commercial diet-fed grass carp (CDFG). Compared with CDFG, FBFG exhibited no significant difference in proximate composition of the muscle; however, an obvious decrease in muscle fiber size and significantly higher hardness, chewiness, and gumminess were observed. Transcriptome results showed that a total of 197 genes were differentially regulated in the dorsal muscle. Down-regulated genes included four genes annotated with myocyte development and 12 transcripts annotated with components of myofibrils. In addition, the FBFG group exhibited significantly lower expression of genes associated with oxygen transport, the mitochondrial respiratory chain, and creatine metabolism, suggesting reduced energy availability in the muscle of the FBFG. Moreover, using western-blotting and enzyme assays, we found decreased protein levels in the mitochondrial electron transport respiratory chain and creatine metabolism activities, as well as increased expression of autophagy marker protein levels, in the muscle of FBFG. Overall, our results suggest that an abnormal energy distribution may exist in grass carps after feeding with faba bean, which is reflected by a mass of fat deposition in the adipose tissue and hepatopancreas and subdued metabolic activity in the muscle.
Project description:This dataset is referred to a collection of 41 faba bean (Vicia faba L.) and 15 lentil (Lens culinaris Medik.) accessions from the ex situ repository of the Institute of Biosciences and Bioresources of the Italian National Research Council (CNR-IBBR). All the accessions were grown at the experimental farm "P. Martucci" of the University of Bari "Aldo Moro" (41°01'22.1'' N 16°54'21.0'' E) during the growing season 2017-2018, according to a randomized block design with two replicates, each constituted by 10 individual plants. The dataset reports raw and elaborated analytical data determined on the flour produced from individual accessions, concerning proximate composition, bioactive compounds, antioxidant activity, fatty acid composition, and physicochemical and functional properties. Elaborated data might be used to understand the compositional variability within the species and, together with raw data, to highlight peculiar accessions characterized by valuable nutritional and/or technological attitude useful in research institutions and food industries. Furthermore, the data can be used for genetic studies aimed at identifying genomic regions underlying nutritional and technological traits.
Project description:Mungbeans and lentils are relatively easily grown and cheaper sources of microgreens, but their phytonutrient diversity is not yet deeply explored. In this study, 20 diverse genotypes each of mungbean and lentil were grown as microgreens under plain-altitude (Delhi) and high-altitude (Leh) conditions, which showed significant genotypic variations for ascorbic acid, tocopherol, carotenoids, flavonoid, total phenolics, DPPH (1, 1-diphenyl-2-picrylhydrazyl), FRAP (ferric-reducing antioxidant power), peroxide activity, proteins, enzymes (peroxidase and catalase), micronutrients, and macronutrients contents. The lentil and mungbean genotypes L830 and MH810, respectively, were found superior for most of the studied parameters over other studied genotypes. Interestingly, for most of the studied parameters, Leh-grown microgreens were found superior to the Delhi-grown microgreens, which could be due to unique environmental conditions of Leh, especially wide temperature amplitude, photosynthetically active radiation (PAR), and UV-B content. In mungbean microgreens, total phenolics content (TPC) was found positively correlated with FRAP and DPPH, while in lentil microgreens, total flavonoid content (TFC) was found positively correlated with DPPH. The most abundant elements recorded were in the order of K, P, and Ca in mungbean microgreens; and K, Ca, and P in the lentil microgreens. In addition, these Fabaceae microgreens may help in the nutritional security of the population residing in the high-altitude regions of Ladakh, especially during winter months when this region remains landlocked due to heavy snowfall.
Project description:In this study, adzuki bean cultivars including Arari, Chilbopat, Geomguseul, and Hongeon were recently cultivated, and the concentrations of seven individual anthocyanins were determined in their seed coats for the first time. Moreover, the variations of total saponin content (TSC), total phenolic content (TPC), 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) between defatted and undefatted extracts of whole seeds, seed coats, and dehulled seeds of each were analyzed. The anthocyanins were detected only in the black seed-coated cultivars and delphinidin-3-O-glucoside was dominant in both Geomguseul (12.46 mg/g) and Chilbopat (10.88 mg/g) followed by delphinidin-3-O-galactoside. TSC and TPC were in the ranges of 16.20-944.78 mg DE/g and 0.80-57.35 mg GAE/g, respectively, and each decreased in the order of seed coats > whole seeds > dehulled seeds regardless of extract type. The antioxidant activities also showed similar patterns of variation. Geomguseul seed coats outweighed the remaining cultivars in terms of TPC and FRAP activity (p < 0.05). Generally, significant variations of metabolite contents and antioxidant activities were observed between cultivars and across their seed parts (p < 0.05). Thence, black seed-coated adzuki beans could be excellent sources of anthocyanins and antioxidants.
Project description:Many reports of the intestinal microbiota of grass carp have addressed the microbial response to diet or starvation or the effect of microbes on metabolism; however, the intestinal microbiota of crisp grass carp has yet to be elucidated. Moreover, the specific bacteria that play a role in the crispiness of grass carp fed faba beans have not been elucidated. In the present study, 16S sequencing was carried out to compare the intestinal microbiota in the fore-, mid- and hind-intestine segments of grass carp following feeding with either faba beans or formula feed. Our results showed that (1) the hind-intestine presented significant differences in diversity relative to the fore- or midintestine and (2) faba beans significantly increased the diversity of intestinal microbiota, changed the intestinal microbiota structure (Fusobacteria was reduced from 64.26% to 18.24%, while Proteobacteria was significantly increased from 17.75% to 51.99%), and decreased the metabolism of energy, cofactors and vitamins in grass carp. Furthermore, at the genus and species levels, Acinetobacter accounted for 15.09% of the microbiota, and Acinetobacter johnsonii and Acinetobacter radioresistens constituted 3.41% and 2.99%, respectively, which indicated that Acinetobacter of the family Moraxellaceae contributed to changes in the intestinal microbiota structure and could be used as a potential biomarker. These results may provide clues at the intestinal microbiota level to understanding the mechanism underlying the crispiness of grass carp fed faba beans.
Project description:The chive maggot Bradysia cellarum and the fungus gnat B. impatiens are two primary root pests of plants, which can coexist on the same host plants and are the devastating pests on liliaceous crops and edible fungi. Their growth and development are affected by the nutrient contents of their host plants. In this study, we assessed the effects of different host plant nutrients on the nutrient contents of these two Bradysia species. The nutrients of the chive (Allium tuberosum Rottl. ex Spreng.), board bean (Vicia faba L.), lettuce (Lactuca sativa L. var. ramosa Hort.), cabbage (Brassica oleracea L.), wild cabbage (Brassica oleracea var. capitata rubra) and pepper (Capsicum annuum L.) roots were determined, and their effect on nutrient content of the two Bradysia species after feeding on the host plant for three continuous generations were evaluated. The results show that chive and B-bean contained higher levels of protein, free amino acid, soluble sugar and starch than others. As a result, the soluble sugar, fat and protein contents were significantly higher in both Bradysia species reared on chive and B-bean than on cabbage, lettuce, W-cabbage and pepper, suggesting nutritional preference of these insects. Based on our results, we concluded that the two Bradysia species displayed nutrient preference toward chive and B-bean, which provides a reference for understanding their host plant range and for control of the insect species via field crop rotations.