Project description:Microglia are the tissue macrophages of the central nervous system (CNS) and the first to respond to CNS dysfunction and disease. Gene expression profiling of microglia during development, under homeostatic conditions and in the diseased CNS provided insight in microglia functions and changes thereof. Single cell sequencing studies further contributed to our understanding of microglia heterogeneity in relation to age, sex and CNS disease. Recently, single nucleus gene expression profiling was performed on (frozen) CNS tissue. Transcriptomic profiling of CNS tissues by (single) nucleus RNA-sequencing has the advantage that it can be applied to archived and well stratified frozen specimens. Here, we give an overview of the significant advances recently made in microglia transcriptional profiling. In addition, we present matched cellular and nuclear microglia RNA-seq datasets we generated from mouse and human CNS tissue to compare cellular versus nuclear transcriptomes from fresh and frozen samples. We demonstrate that microglia can be similarly profiled with cell and nucleus profiling, and importantly also with nuclei isolated from frozen tissue. Nuclear microglia transcriptomes are a reliable proxy for cellular transcriptomes. Interestingly, lipopolysaccharide- (LPS)-induced changes in gene expression were even more pronounced in the nuclear transcriptome. In addition, heterogeneity in microglia observed in fresh samples is similarly detected in frozen nuclei of the same donor. Together, these results show that microglia nuclear RNAs obtained from frozen CNS tissue are a reliable proxy for microglia gene expression and cellular heterogeneity and may prove an effective strategy to study of the role of microglia in neuropathology.
Project description:Recent years have seen the development of computational tools to assist researchers in performing CRISPR-Cas9 experiment optimally. More specifically, these tools aim to maximize on-target activity (guide efficiency) while also minimizing potential off-target effects (guide specificity) by analyzing the features of the target site. Nonetheless, currently available tools cannot robustly predict experimental success as prediction accuracy depends on the approximations of the underlying model and how closely the experimental setup matches the data the model was trained on. Here, we present an overview of the available computational tools, their current limitations and future considerations. We discuss new trends around personalized health by taking genomic variants into account when predicting target sites as well as discussing other governing factors that can improve prediction accuracy.
Project description:The advent of immunotherapy has revolutionized how we manage and treat cancer. While the majority of immunotherapy-related studies performed to date have focused on adult malignancies, a handful of these therapies have also recently found success within the pediatric space. In this review, we examine the immunotherapeutic agents that have achieved the approval of the US Food and Drug Administration for treating childhood cancers, highlighting their development, mechanisms of action, and the lessons learned from the seminal clinical trials that ultimately led to their approval. We also shine a spotlight on several emerging immunotherapeutic modalities that we believe are poised to have a positive impact on the treatment of pediatric malignancies in the near future.
Project description:Gastric cancer currently ranks fourth in cancer-related mortality worldwide. In the western world, it is most often diagnosed at an advanced stage, after becoming metastatic at distant sites. Patients with advanced disease (locally advanced or metastatic) have a somber prognosis, with a median overall survival of 10-12 mo, and palliative chemotherapy is the mainstay of treatment. In recent years, novel approaches using inhibition of human epidermal growth factor receptor 2 (HER2) have demonstrated significant improvements in progression-free and overall survival, compared with chemotherapy alone, in first-line treatment of patients with overexpression of HER2. In addition, both second-line chemotherapy and treatment with the vascular endothelial growth factor receptor-inhibitor ramucirumab demonstrated significant benefits in terms of overall survival, compared with best supportive care, in randomized studies. Moreover, ramucirumab in combination with chemotherapy demonstrated further significant benefits in terms of progression-free and overall survival, compared with chemotherapy alone, in second-line treatment for patients with metastatic gastric cancer. A recently published molecular classification of gastric cancer is expected to improve patient stratification and selection for clinical trials and provide a roadmap for future drug development. Nevertheless, despite these developments the prognosis of patients with advanced gastric cancer remains poor. In this review we discuss current standards of care and outline major topics of drug development in gastric cancer.
Project description:Chimeric antigen receptor T (CAR-T) cell therapy represents a breakthrough in personalized cancer treatments. In this regard, synthetic receptors comprised of antigen recognition domains, signaling, and stimulatory domains are used to reprogram T-cells to target tum or cells and destroy them. Despite the success of this approach in refractory B-cell malignancies, the optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been validated. Natural killer cells are powerful cytotoxic lymphocytes specialized in recognizing and dispensing the tumor cells in coordination with other anti-tumor immunity cells. Based on these studies, many investigations are focused on the accurate designing of CAR T-cells with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system or other novel gene editing tools that can induce hereditary changes with or without the presence of a double-stranded break into the genome. These methodologies can be specifically focused on negative controllers of T-cells, induce modifications to a particular gene, and produce reproducible, safe, and powerful allogeneic CAR T-cells for on-demand cancer immunotherapy. The improvement of the CRISPR/Cas9 innovation offers an adaptable and proficient gene-editing capability in activating different pathways to help natural killer cells interact with novel CARs to particularly target tumor cells. Novel achievements and future challenges of combining next-generation CRISPR-Cas9 gene editing tools to optimize CAR T-cell and natural killer cell treatment for future clinical trials toward the foundation of modern cancer treatments have been assessed in this review.
Project description:Metastatic castrate resistant prostate cancer (PCa) remains an incurable entity. In the era of immunotherapy, the complex PCa microenvironment poses a unique challenge to the successful application of this class of agents. However, in the last decade, a tremendous effort has been made to explore this field of therapeutics. In this review, the physiology of the cancer immunity cycle is highlighted in the context of the prostate tumor microenvironment, and the current evidence for use of various classes of immunotherapy agents including vaccines (dendritic cell based, viral vector based and DNA/mRNA based), immune checkpoint inhibitors, Chimeric antigen receptor T cell therapy, antibody-mediated radioimmunotherapy, antibody drug conjugates, and bispecific antibodies, is consolidated. Finally, the future directions for combinatorial approaches to combat PCa are discussed.
Project description:Glioblastoma is the most lethal intracranial primary malignancy by no optimal treatment option. Cancer immunotherapy has achieved remarkable survival benefits against various advanced tumors, such as melanoma and non-small-cell lung cancer, thus triggering great interest as a new therapeutic strategy for glioblastoma. Moreover, the central nervous system has been rediscovered recently as a region for active immunosurveillance. There are vibrant investigations for successful glioblastoma immunotherapy despite the fact that initial clinical trial results are somewhat disappointing with unique challenges including T-cell dysfunction in the patients. This review will explore the potential of current immunotherapy modalities for glioblastoma treatment, especially focusing on major immune checkpoint inhibitors and the future strategies with novel targets and combo therapies. Immune-related adverse events and clinical challenges in glioblastoma immunotherapy are also summarized. Glioblastoma provides persistent difficulties for immunotherapy with a complex state of patients' immune dysfunction and a variety of constraints in drug delivery to the central nervous system. However, rational design of combinational regimens and new focuses on myeloid cells and novel targets to circumvent current limitations hold promise to advent truly viable immunotherapy for glioblastoma.
Project description:Acute Lymphoblastic Leukemia (ALL) is the predominant hematological malignancy in pediatric populations, originating from B- or T-cell precursors within the bone marrow. The disease exhibits a high degree of heterogeneity, both at the molecular level and in terms of clinical presentation. A complex interplay between inherited and acquired genetic alterations contributes to disease pathogenesis, often resulting in the disruption of cellular functions integral to the leukemogenic process. The advent of CRISPR/Cas9 as a gene editing tool has revolutionized biological research, underscoring its potential to modify specific genomic loci implicated in cancer. Enhanced understanding of molecular alterations in ALL has facilitated significant advancements in therapeutic strategies. In this review, we scrutinize the application of CRISPR/Cas9 as a tool for identifying genetic targets to improve therapy, circumvent drug resistance, and facilitate CAR-T cell-based immunotherapy. Additionally, we discuss the challenges and future prospects of CRISPR/Cas9 applications in ALL.
Project description:Clustered regularly interspaced short palindromic repeats (CRISPR) system provides adaptive immunity against plasmids and phages in prokaryotes. This system inspires the development of a powerful genome engineering tool, the CRISPR/CRISPR-associated nuclease 9 (CRISPR/Cas9) genome editing system. Due to its high efficiency and precision, the CRISPR/Cas9 technique has been employed to explore the functions of cancer-related genes, establish tumor-bearing animal models and probe drug targets, vastly increasing our understanding of cancer genomics. Here, we review current status of CRISPR/Cas9 gene editing technology in oncological research. We first explain the basic principles of CRISPR/Cas9 gene editing and introduce several new CRISPR-based gene editing modes. We next detail the rapid progress of CRISPR screening in revealing tumorigenesis, metastasis, and drug resistance mechanisms. In addition, we introduce CRISPR/Cas9 system delivery vectors and finally demonstrate the potential of CRISPR/Cas9 engineering to enhance the effect of adoptive T cell therapy (ACT) and reduce adverse reactions.