Project description:The homeodomain zipper family (HD-ZIP) of transcription factors is present only in plants and plays important role in the regulation of plant-specific processes. The subfamily IV of HDZ transcription factors (HD-ZIP IV) has primarily been implicated in the regulation of epidermal structure development. Though this gene family is present in all lineages of land plants, members of this gene family have not been identified in banana, which is one of the major staple fruit crops. In the present work, we identified 21 HDZIV encoding genes in banana by the computational analysis of banana genome resource. Our analysis suggested that these genes putatively encode proteins having all the characteristic domains of HDZIV transcription factors. The phylogenetic analysis of the banana HDZIV family genes further confirmed that after separation from a common ancestor, the banana, and poales lineages might have followed distinct evolutionary paths. Further, we conclude that segmental duplication played a major role in the evolution of banana HDZIV encoding genes. All the identified banana HDZIV genes expresses in different banana tissue, however at varying levels. The transcript levels of some of the banana HDZIV genes were also detected in banana fruit pulp, suggesting their putative role in fruit attributes. A large number of genes of this family showed modulated expression under drought and salinity stress. Taken together, the present work lays a foundation for elucidation of functional aspects of the banana HDZIV encoding genes and for their possible use in the banana improvement programs.
Project description:The shoot epidermis of land plants serves as a crucial interface between plants and the atmosphere: pavement cells protect plants from desiccation and other environmental stresses, while stomata facilitate gas exchange and transpiration. Advances have been made in our understanding of stomatal patterning and differentiation, and a set of 'master regulatory' transcription factors of stomatal development have been identified. However, they are limited to specifying stomatal differentiation within the epidermis. Here, we report the identification of an Arabidopsis homeodomain-leucine zipper IV (HD-ZIP IV) protein, HOMEODOMAIN GLABROUS2 (HDG2), as a key epidermal component promoting stomatal differentiation. HDG2 is highly enriched in meristemoids, which are transient-amplifying populations of stomatal-cell lineages. Ectopic expression of HDG2 confers differentiation of stomata in internal mesophyll tissues and occasional multiple epidermal layers. Conversely, a loss-of-function hdg2 mutation delays stomatal differentiation and, rarely but consistently, results in aberrant stomata. A closely related HD-ZIP IV gene, Arabidopsis thaliana MERISTEM LAYER1 (AtML1), shares overlapping function with HDG2: AtML1 overexpression also triggers ectopic stomatal differentiation in the mesophyll layer and atml1 mutation enhances the stomatal differentiation defects of hdg2. Consistently, HDG2 and AtML1 bind the same DNA elements, and activate transcription in yeast. Furthermore, HDG2 transactivates expression of genes that regulate stomatal development in planta. Our study highlights the similarities and uniqueness of these two HD-ZIP IV genes in the specification of protodermal identity and stomatal differentiation beyond predetermined tissue layers.
Project description:A defining feature of plant leaves is their flattened shape. This shape depends on an antagonism between the genes that specify adaxial (top) and abaxial (bottom) tissue identity; however, the molecular nature of this antagonism remains poorly understood. Class III homeodomain leucine zipper (HD-ZIP) transcription factors are key mediators in the regulation of adaxial-abaxial patterning. Their expression is restricted adaxially during early development by the abaxially expressed microRNA (MIR)165/166, yet the mechanism that restricts MIR165/166 expression to abaxial leaf tissues remains unknown. Here, we show that class III and class II HD-ZIP proteins act together to repress MIR165/166 via a conserved cis-element in their promoters. Organ morphology and tissue patterning in plants, therefore, depend on a bidirectional repressive circuit involving a set of miRNAs and its targets.
Project description:Land plants underwent tremendous evolutionary change following the divergence of the ancestral lineage from algal relatives. Several important developmental innovations appeared as the embryophyte clade diversified, leading to the appearance of new organs and tissue types. To understand how these changes came about, we need to identify the fundamental genetic developmental programs that are responsible for growth, patterning, and differentiation and describe how these programs were modified and elaborated through time to produce novel morphologies. Class III homeodomain-leucine zipper (class III HD-Zip) genes, identified in the model plant Arabidopsis thaliana, provide good candidates for basic land plant patterning genes. We show that these genes may have evolved in a common ancestor of land plants and their algal sister group and that the gene family has diversified as land plant lineages have diversified. Phylogenetic analysis, expression data from nonflowering lineages, and evidence from Arabidopsis and other flowering plants indicate that class III HD-Zip genes acquired new functions in sporophyte apical growth, vascular patterning and differentiation, and leaf development. Modification of expression patterns that accompanied diversification of class III HD-Zip genes likely played an important role in the evolution of land plant form.
Project description:Transcription factors are proposed as suitable targets for the control of traits such as yield or food quality in plants. This study reports the results of a functional genomics research effort that identified ATHB17, a transcription factor from the homeodomain-leucine zipper class II family, as a novel target for the enhancement of photosynthetic capacity. It was shown that ATHB17 is expressed natively in the root quiescent centre (QC) from Arabidopsis embryos and seedlings. Analysis of the functional composition of genes differentially expressed in the QC from a knockout mutant (athb17-1) compared with its wild-type sibling revealed the over-representation of genes involved in auxin stimulus, embryo development, axis polarity specification, and plastid-related processes. While no other phenotypes were observed in athb17-1 plants, overexpression of ATHB17 produced a number of phenotypes in Arabidopsis including enhanced chlorophyll content. Image analysis of isolated mesophyll cells of 35S::ATHB17 lines revealed an increase in the number of chloroplasts per unit cell size, which is probably due to an increase in the number of proplastids per meristematic cell. Leaf physiological measurements provided evidence of improved photosynthetic capacity in 35S::ATHB17 lines on a per unit leaf area basis. Estimates of the capacity for ribulose-1,5-bisphosphate-saturated and -limited photosynthesis were significantly higher in 35S::ATHB17 lines.
Project description:The plant-specific homeodomain zipper family (HD-ZIP) of transcription factors plays central roles in regulating plant development and environmental resistance. HD-ZIP transcription factors IV (HDZ IV) have been involved primarily in the regulation of epidermal structure development, such as stomata and trichomes. In our study, we identified nine HDZ IV-encoding genes in Cannabis sativa L. by conducting a computational analysis of cannabis genome resources. Our analysis suggests that these genes putatively encode proteins that have all the conserved domains of HDZ IV transcription factors. The phylogenetic analysis of HDZ IV gene family members of cannabis, rice (Oryza sativa), and Arabidopsis further implies that they might have followed distinct evolutionary paths after divergence from a common ancestor. All the identified cannabis HDZ IV gene promoter sequences have multiple regulation motifs, such as light- and hormone-responsive elements. Furthermore, experimental evidence shows that different HDZ IV genes have different expression patterns in root, stem, leaf, and flower tissues. Four genes were primarily expressed in flowers, and the expression of CsHDG5 (XP_030501222.1) was also correlated with flower maturity. Fifty-nine genes were predicted as targets of HDZ IV transcription factors. Some of these genes play central roles in pathogen response, flower development, and brassinosteroid signaling. A subcellular localization assay indicated that one gene of this family is localized in the Arabidopsis protoplast nucleus. Taken together, our work lays fundamental groundwork to illuminate the function of cannabis HDZ IV genes and their possible future uses in increasing cannabis trichome morphogenesis and secondary metabolite production.
Project description:BACKGROUND:Many studies in Arabidopsis and rice have demonstrated that HD-Zip transcription factors play important roles in plant development and responses to abiotic stresses. Although common wheat (Triticum aestivum L.) is one of the most widely cultivated and consumed food crops in the world, the function of the HD-Zip proteins in wheat is still largely unknown. RESULTS:To explore the potential biological functions of HD-Zip genes in wheat, we performed a bioinformatics and gene expression analysis of the HD-Zip family. We identified 113 HD-Zip members from wheat and classified them into four subfamilies (I-IV) based on phylogenic analysis against proteins from Arabidopsis, rice, and maize. Most HD-Zip genes are represented by two to three homeoalleles in wheat, which are named as TaHDZX_ZA, TaHDZX_ZB, or TaHDZX_ZD, where X denotes the gene number and Z the wheat chromosome on which it is located. TaHDZs in the same subfamily have similar protein motifs and intron/exon structures. The expression profiles of TaHDZ genes were analysed in different tissues, at different stages of vegetative growth, during seed development, and under drought stress. We found that most TaHDZ genes, especially those in subfamilies I and II, were induced by drought stress, suggesting the potential importance of subfamily I and II TaHDZ members in the responses to abiotic stress. Compared with wild-type (WT) plants, transgenic Arabidopsis plants overexpressing TaHDZ5-6A displayed enhanced drought tolerance, lower water loss rates, higher survival rates, and higher proline content under drought conditions. Additionally, the transcriptome analysis identified a number of differentially expressed genes between 35S::TaHDZ5-6A transgenic and wild-type plants, many of which are involved in stress response. CONCLUSIONS:Our results will facilitate further functional analysis of wheat HD-Zip genes, and also indicate that TaHDZ5-6A may participate in regulating the plant response to drought stress. Our experiments show that TaHDZ5-6A holds great potential for genetic improvement of abiotic stress tolerance in crops.
Project description:BackgroundWild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils. In soybean genome, there exist about 140 HD-Zip (Homeodomain-leucine Zipper) genes. HD-Zip transcription factor family is one of the largest plant specific superfamilies and plays important roles in response to abiotic stresses. Although HD-Zip transcription factors have been broadly reported to be involved in plant resistance to abiotic stresses like salt and drought, their roles in response to bicarbonate stress is largely unknown.ResultsFrom our previous transcriptome profile analysis of wild soybean treated by 50 mM NaHCO3, we identified an HD-Zip gene (Gshdz4) which showed high response to the alkaline stress. Our result of qRT-PCR showed that the expression of Gshdz4 was induced by alkaline stress (NaHCO3) in both leaves and roots of wild soybean. Overexpression of Gshdz4 in Arabidopsis resulted in enhanced tolerance to NaHCO3 and KHCO3 during the process of plant growth and development. However, the growths of transgenic and WT plants were not significantly different on the medium with high pH adjusted by KOH, implicating Gshdz4 is only responsible for resisting HCO3 (-) but not high pH. The transgenic plants had less MDA contents but higher POD activities and chlorophyll contents than the WT plants. Moreover, the transcript levels of stress-related genes, such as NADP-ME, H (+) -Ppase, RD29B and KIN1 were increased with greater extent in the transgenic plants than the wild plants. On the contrary, Gshdz4 overexpression lines were much sensitive to osmotic stress at seed germination and stocking stages compared to the wild plants.ConclusionsWe revealed that the important and special roles of Gshdz4 in enhancing bicarbonate tolerance and responding to osmotic stress. It is the first time to elucidate these novel functions of HD-ZIP transcription factors. All the evidences broaden our understanding of functions of HD-Zip family and provide clues for uncovering the mechanisms of high tolerance of wild soybean to saline-alkaline stresses.
Project description:Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.