Project description:Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by abnormally high concentrations of low-density lipoprotein (LDL) cholesterol in the blood, which predisposes affected persons to premature coronary heart disease (CHD) and death. FH is one of the most common inherited disorders and the most common one known to cause premature CHD in people of European descent. The vast majority of people with FH have inherited a single mutation from one parent in either the LDL receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. Despite their greatly elevated risk of coronary heart disease, most individuals with FH remain undiagnosed, untreated, or inadequately treated. Cascade screening is a mechanism for identifying people at risk for a genetic condition by a process of systematic family tracing. The National Institute for Health and Clinical Excellence in the United Kingdom recommends cascade screening of close biological relatives of people with a clinical diagnosis of FH in order to effectively identify additional FH patients. The ultimate goal of this testing is to reduce morbidity and mortality from heart disease in persons with FH through early diagnosis and effective disease management. The goal of this article is to outline the available evidence on the clinical validity and utility of cascade screening for FH, while emphasizing the availability, usefulness, and recommendation for including DNA testing (if the disease-causing mutation has been identified).
Project description:BackgroundFamilial hypercholesterolemia (FH) is a monogenic disorder of lipoprotein metabolism leading to an increased risk of premature cardiovascular disease. Genetic testing for FH is not commonly used in Asian countries. We aimed to define the genetic spectrum of FH in Hong Kong and to test the feasibility of cascade genetic screening.MethodsNinety-six Chinese subjects with a clinical diagnosis of FH were recruited, and family-based cascade screening incorporating genetic testing results was performed.ResultsForty-two distinct mutations were identified in 67% of the index FH cases. The majority of causative mutations were in the LDLR gene. The three commonest mutations in the LDLR gene were NM_000527.4(LDLR): c.1241 T>G, NM_000527.4(LDLR): c.1474G>A, and NM_000527.4(LDLR): c. 682G>A, and nine novel variants were identified. The NM_000384.2(APOB): c.10579 C>T variant of the APOB gene was found in 5% of the index subjects. The presence of causative mutation significantly increased the odds of successful family recruitment for screening with an OR of 3.7 (95% CI: 1.53-9.11, p = 0.004).ConclusionApproximately two-third of the subjects in this clinically ascertained sample of patients with FH had a discrete genetic basis. Genetic identification improves the response rate and efficiency of family screening.
Project description:One of the most common autosomal dominant disorders is familial hypercholesterolemia (FH), causing premature atherosclerotic cardiovascular diseases and a high risk of death due to lifelong exposure to elevated low-density lipoprotein cholesterol (LDL-C) levels. FH has a proven arsenal of treatments and the opportunity for genetic diagnosis. Despite this, FH remains largely underdiagnosed worldwide. Cascade screening is a cost-effective method for the identification of new patients with FH and the prevention of cardiovascular diseases. It is usually based only on clinical data. We describe a 48-year-old index patient with a very high LDL-C level without controlled guidelines-based medication, premature atherosclerosis, and a rare variant in the low-density lipoprotein receptor (LDLR) gene. Phenotypic cascade screening identified three additional FH relatives, namely the proband's daughter, and two young grandsons. The genetic screening made it possible to rule out FH in the proband's younger grandson. This clinical case demonstrates that genetic cascade screening is the most effective way of identifying new FH cases. We also first described in detail the phenotype of patients with a likely pathogenic variant LDLR-p.K223_D227dup.
Project description:In familial hypercholesterolemia (FH), carriers profit from presymptomatic diagnosis and early treatment. Due to the autosomal dominant pattern of inheritance, first degree relatives of patients are at 50% risk. A program to identify healthy relatives at risk of premature cardiovascular problems, funded by the Netherlands government until 2014, raised questions on privacy and autonomy in view of the chosen active approach of family members. Several countries are building cascade screening programs inspired by Dutch experience, but meanwhile, the Netherlands' screening program itself is in transition. Insight in stakeholders' views on approaching family members is lacking. Literature and policy documents were studied, and stakeholders were interviewed on pros and cons of actively approaching healthy relatives. Sociotechnical analysis explored new roles and responsibilities, with uptake, privacy, autonomy, psychological burden, resources, and awareness as relevant themes. Stakeholders agree on the importance of early diagnosis and informing the family. Dutch healthcare typically focuses on cure, rather than prevention. Barriers to cascade screening are paying an own financial contribution, limited resources for informing relatives, and privacy regulation. To benefit from predictive, personalized, and preventive medicine, the roles and responsibilities of stakeholders in genetic testing as a preventive strategy, and informing family members, need to be carefully realigned.
Project description:Background and objectivesFamilial hypercholesterolemia (FH) increases the risk of premature cardiovascular disease through disrupted low-density lipoprotein cholesterol (LDL-C) metabolism. Although FH is a severe condition, it remains widely underdiagnosed, which can be attributed to barriers in genetic testing and a lack of awareness. This study aims to propose and evaluate a targeted screening program for FH in South Korea by integrating the General Health Screening Program (GHSP) with cascade genetic screening.MethodsThe study included individuals with LDL-C levels ≥190 mg/dL identified during the 2021 GHSP (primary participants). Data on demographics, lifestyle, medical history, and family history were collected through questionnaires. Targeted next-generation sequencing was used to identify pathogenic mutations in the PCSK9, APOB, LDLRAP1, and LDLR genes associated with FH. Pathogenic mutations found in primary participants were confirmed in their relatives (secondary participants) using Sanger sequencing. Participant characteristics were analyzed based on the presence of pathogenic mutations.ResultsAmong 83 individuals with severe hypercholesterolemia identified through the GHSP, 7 primary participants (8.4%) carried pathogenic mutations in the LDLR and PCSK9 genes. In secondary participants, pathogenic mutations were identified in 61.1% of the relatives of 4 patients with pathogenic mutations. The prevalence of pathogenic mutations was significantly higher in primary participants compared to secondary participants.ConclusionsIntegrating community resources with FH screening can enhance the early detection and treatment of FH. By utilizing GHSP data and adding genetic screening, the proposed model provides a strategy to reduce the cardiovascular risks associated with FH, supporting its wider adoption at the national level.
Project description:Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the genes coding for the low density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type-9 (PCSK9) or apo-lipoprotein B-100 (APOB). The aim of the present work was to determine the genetic basis of dyslipidemia in 11 unrelated Pakistani families.High resolution melting (HRM), sequencing and restriction fragment length polymorphism (RFLP).Probands were screened for the promoter and all coding regions, including intron/exon boundaries, of LDLR and PCSK9 and part of exon 26 of APOB including p.(R3527Q). Two families were identified with previously unreported LDLR mutations (c.1019_1020delinsTG, p.(C340L) and c.1634G>A, p.(G545E)). Both probands had tendon xanthomas or xanthelasma and/or a history of cardiovascular disease. Co-segregation with hypercholesterolemia was demonstrated in both families. In silico studies predicted these variations to be damaging. In two families, novel PCSK9 variations were identified (exon2; c.314G>A, p.(R105Q) and exon3; c.464C>T, p.(P155L)). In silico studies suggested both were likely to be damaging, and family members carrying the p.(105Q) allele had lower total cholesterol levels, suggesting this is a loss-of-function mutation. For c.464C>T p.(P155L) the small number of relatives available precluded any strong inference.This report brings to seven the number of different LDLR mutations reported in FH patients from Pakistan and, as expected in this heterogeneous population, no common LDLR mutation has been identified.
Project description:Familial hypercholesterolemia (FH) is a common inherited disorder that results in premature atherosclerosis. Diagnosis of FH is suspected on the basis of clinical criteria, but confirmation requires genetic testing. In the era of statins, early diagnosis and initiation of treatment can modify disease progression and outcomes. Therefore, cascade screening with a combination of lipid concentration measurements and DNA testing should be used to identify relatives of index cases with a clinical diagnosis of FH. Autosomal dominant FH is related to mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. Genetic screening of the LDLR gene is challenging to achieve at a feasible cost, especially in people who do not have a founder effect. Nucleotide sequencing of all exons and flanking splicing regions in combination with multiplex ligation probe amplification to detect large insertions or deletions is considered the gold-standard approach to screen for LDLR mutations. Alternatively, the cDNA can be sequenced; however, this procedure is not suitable for use in large populations, because of the need of RNA extraction. Multiplex analysis can be appropriate for population with founder effects or a low number of different mutations. Finally, there are many techniques for a mutation scanning approach, which have some benefits over sequencing, and also with the potential for detecting known and novel mutations. Familial defective Apo B is amenable to genetic diagnosis by screening for a few mutations. Recently, gain-of-function mutations in PCSK9 gene have been demonstrated to cause FH phenotype. Strategies for population screening, cost-effectiveness of genetic screening, ethical aspects, and insurance policies are discussed and need implementation worldwide.
Project description:Heterozygous familial hypercholesterolemia (HeFH) creates elevated low-density lipoprotein cholesterol (LDL-C), causing premature atherosclerotic cardiovascular disease (ASCVD). Guidelines recommend cascade screening relatives and starting statin therapy at 8-10 years old, but adherence to these recommendations is low. Our purpose was to measure self-reported physician practices for cascade screening and treatment initiation for HeFH using a survey of 500 primary care physicians and 500 cardiologists: 54% "always" cascade screen relatives of an individual with FH, but 68% would screen individuals with "strong family history of high cholesterol or premature ASCVD", and 74% would screen a child of a patient with HeFH. The most likely age respondents would start statins was 18-29 years, with few willing to prescribe to a pediatric male (17%) or female (14%). Physicians who reported previously diagnosing a patient with HeFH were more likely to prescribe to a pediatric patient with HeFH, either male (OR = 1.34, 95% CI = 0.99-1.81) or female (OR = 1.31, 95% CI = 0.99-1.72). Many physicians do not cascade screen and are less likely to screen individuals with family history of known HeFH compared to "high cholesterol or premature ASCVD". Most expressed willingness to screen pediatric patients, but few would start treatment at recommended ages. Further education is needed to improve diagnosis and treatment of HeFH.
Project description:BackgroundFamilial hypercholesterolemia (FH) is a common autosomal dominant disorder with a frequency of 1 in 200 to 500 in most European populations. Mutations in LDLR, APOB and PCSK9 genes are known to cause FH. In this study, we analyzed the genetic spectrum of the disease in the understudied Polish population.Materials and methods161 unrelated subjects with a clinical diagnosis of FH from the south-eastern region of Poland were recruited. High resolution melt and direct sequencing of PCR products were used to screen 18 exons of LDLR, a region of exon 26 in the APOB gene and exon 7 of PCSK9. Multiplex ligation-dependent probe amplification (MLPA) was performed to detect gross deletions and insertions in LDLR. Genotypes of six LDL-C raising SNPs were used for a polygenic gene score calculation.ResultsWe found 39 different pathogenic mutations in the LDLR gene with 10 of them being novel. 13 (8%) individuals carried the p.Arg3527Gln mutation in APOB, and overall the detection rate was 43.4%. Of the patients where no mutation could be found, 53 (84.1%) had a gene score in the top three quartiles of the healthy comparison group suggesting that they have a polygenic cause for their high cholesterol.ConclusionsThese results confirm the genetic heterogeneity of FH in Poland, which should be considered when designing a diagnostic strategy in the country. As in the UK, in the majority of patients where no mutation can be found, there is likely to be a polygenic cause of their high cholesterol level.
Project description:Familial hypercholesterolemia (FH) is an autosomal dominant disorder associated with premature cardiovascular disease (CVD). Mutations in the LDLR, APOB, and PCSK9 genes are known to cause FH. In this study, we analysed the genetic spectrum of the disease in subjects from the Iranian population with a clinical diagnosis of FH. Samples were collected from 16 children and family members from five different cities of Iran. Probands were screened for mutations in the LDLR, APOB, and PCSK9 genes using next generation sequencing, with results confirmed by Sanger sequencing. The likely pathology of identified variants was examined using in silico tools. Of the probands, 14 had a clinical diagnosis of homozygous FH and two of heterozygous FH. No mutations were found in either APOB or PCSK9, but nine probands were homozygous for seven different LDLR mutations, with p.(Trp577Arg) occurring in three and p.Val806Glyfs*11 occurring in two patients. Two mutations were novel: p.(Leu479Gln) and p.(Glu668*). Seven probands with a clinical diagnosis of FH were mutation negative. This pilot study, integrating clinical and molecular-based techniques, begins to elucidate the FH heterogeneity and the mutation spectrum in the Iranian population. Such information is important for future disease management and cost savings.