Project description:One of the problems that arise with bifluoride- or fluoride-containing compounds is their poor solubility in non-aqueous solvents. We report herein a facile one-pot synthesis and the chemical analysis of fluoride/bifluoride-containing polymers, which are soluble in MeCN. Different polymers, such as Polyvinylacetate or Polyethylene imine and saccharides, such as maltodextrin, were complexed with ammonium (bi)fluoride using hydrogen bonds to form the desired (bi)fluoride-containing compounds. The newly formed hydrogen bonding (bi)fluoride-doped polymer matrices were analyzed using infrared and nuclear magnetic resonance spectroscopies, and X-ray diffraction. The promising materials also underwent impedance spectroscopy, conductivity measurements and preliminary tests as electrolytes for room temperature fluoride ion batteries along with an analysis of their performance.
Project description:Electrooxidation strategies for synthesizing readily oxidizable products face notable challenges, especially when the oxidation potential of the products is lower than that of the reactants or when high current densities are necessary. The electrooxidation synthesis of trivalent organophosphorus compounds (OPCs (III)) from white phosphorus (P4) has demonstrated potential but is hindered by selectivity issues due to over-oxidation. Herein, we report a tandem electro-thermal synthesis pathway that addresses these challenges in producing OPCs (III) from P4. The process begins with an electrooxidation step that generates a stable trivalent phosphorus transfer reagent, then thermochemically converted into various high-value OPCs (III). Utilizing hexafluoroisopropanol (HFIP) as the nucleophile and optimizing a tetrabutylammonium iodide (TBAI)-4-dimethylaminopyridine (DMAP)-adduct catalytic system, we developed an efficient electrophilic phosphorus transfer reagent via electrosynthesis. The adduct facilitates the oxidation of P4 and enhances the nucleophilicity of HFIP, thereby improving the electrooxidation process. This approach supports high current density, scales up to the hundred-gram level without yield loss, and remains compatible with fluctuating green electricity.
Project description:Natural phosphides--the minerals containing phosphorus in a redox state lower than zero--are common constituents of meteorites but virtually unknown on the Earth. Herein we present the first rich occurrence of iron-nickel phosphides of terrestrial origin. Phosphide-bearing rocks are exposed in three localities in the surroundings of the Dead Sea, Levant: in the northern Negev Desert, Israel and Transjordan Plateau, south of Amman, Jordan. Seven minerals from the ternary Fe-Ni-P system have been identified with five of them, NiP2, Ni5P4, Ni2P, FeP and FeP2, previously unknown in nature. The results of the present study could provide a new insight on the terrestrial origin of natural phosphides--the most likely source of reactive prebiotic phosphorus at the times of the early Earth.
Project description:Liquid formamide has been irradiated by high-energy proton beams in the presence of powdered meteorites, and the products of the catalyzed resulting syntheses were analyzed by mass spectrometry. Relative to the controls (no radiation, or no formamide, or no catalyst), an extremely rich, variegate, and prebiotically relevant panel of compounds was observed. The meteorites tested were representative of the four major classes: iron, stony iron, chondrites, and achondrites. The products obtained were amino acids, carboxylic acids, nucleobases, sugars, and, most notably, four nucleosides: cytidine, uridine, adenosine, and thymidine. In accordance with theoretical studies, the detection of HCN oligomers suggests the occurrence of mechanisms based on the generation of radical cyanide species (CN·) for the synthesis of nucleobases. Given that many of the compounds obtained are key components of extant organisms, these observations contribute to outline plausible exogenous high-energy-based prebiotic scenarios and their possible boundary conditions, as discussed.
Project description:Oppositely charged polymerized ionic liquids (PILs) were used to form complex coacervates in two different organic solvents, 2,2,2-trifluoroethanol (TFE) and hexafluoro-2-propanol (HFIP), and the corresponding phase diagrams were constructed using UV-vis, NMR, and turbidity experiments. While previous studies on complex coacervates have focused almost exclusively on aqueous environments, the use of PILs in the current work enabled studies in solvents with substantially lower dielectric constants (27.0 for TFE, 16.7 for HFIP). The critical salt concentration required to induce complete miscibility was roughly 2-fold larger in HFIP compared with TFE, and two different PIL complexes, solidlike precipitates and liquidlike coacervates, were found in both systems. This study provides insight into the effects of low-dielectric-constant solvents on complex coacervation, which has not been widely studied because of the limited solubility of conventional polyelectrolytes in these media.
Project description:The in-fall of meteorites and interstellar dust particles during the Hadean-Archean heavy bombardment may have provided the early Earth with various reduced oxidation state phosphorus compounds and minerals, including phosphite (HPO32-)([Pi(III)]). The ion phosphite ([Pi(III)])has been postulated to be ubiquitous on the early Earth and consequently could have played a role in the emergence of organophosphorus compounds and other prebiotically relevant P species such as condensed P compounds, e.g., pyrophosphite ([PPi(III)]) and isohypophosphate ([PPi(III-V)]). In the present study, we show that phosphite ([Pi(III)]) oxidizes under mild heating conditions (e.g., wet-dry cycles and a prebiotic scenario mimicking a mildly hot-evaporating/drying pool on the early Earth at 78-83 °C) in the presence of urea and other additives, resulting in changes to orthophosphate ([Pi(V)]) alongside the formation of reactive condensed P compounds (e.g., pyrophosphite ([PPi(III)]) and isohypophosphate ([PPi(III-V)])) through a one-pot mechanism. Additionally, we also show that phosphite ([Pi(III)]) and the condensed P compounds readily react with organics (nucleosides and organic alcohol) to form organophosphorus compounds.
Project description:Patatin is a non-specific plant lipase and the eponymous member of a broad class of serine hydrolases termed the patatin-like phospholipase domain containing proteins (PNPLAs). Certain PNPLA family members can be inhibited by organophosphorus (OP) compounds. Currently, no structural data are available on the modes of interaction between the PNPLAs and OP compounds or their native substrates. To this end, we present the crystal structure of patatin-17 (pat17) in its native state as well as following inhibition with methyl arachidonyl fluorophosphonate (MAFP) and inhibition/aging with diisopropylphosphorofluoridate (DFP). The native pat17 structure revealed the existence of two portals (portal1 and portal2) that lead to its active-site chamber. The DFP-inhibited enzyme underwent the aging process with the negatively charged phosphoryl oxygen, resulting from the loss of an isopropyl group, being within hydrogen-binding distance to the oxyanion hole. The MAFP-inhibited pat17 structure showed that MAFP did not age following its interaction with the nucleophilic serine residue (Ser77) of pat17 since its O-methyl group was intact. The MAFP moiety is oriented with its phosphoryl oxygen in close proximity to the oxyanion hole of pat17 and its O-methyl group located farther away from the oxyanion hole of pat17 relative to the DFP-bound state. The orientation of the alkoxy oxygens within the two OP compounds suggests a role for the oxyanion hole in stabilizing the emerging negative charge on the oxygen during the aging reaction. The arachidonic acid side chain of MAFP could be contained within portals 1 or 2. Comparisons of pat17 in the native, inhibited, and aged states showed no significant global conformational changes with respect to their Cα backbones, consistent with observations from other α/β hydrolases such as group VIIA phospholipase A2.
Project description:This paper investigates the conformational stability of porcine pancreatic lipase (PPL) in three non-aqueous organic solvents, including dimethyl sulfoxide (DMSO), propylene glycol (PRG), and ethanol (EtOH) through molecular dynamic (MD) simulation. The root mean square deviations (RMSDs), radius of gyration (Rg), solution accessible surface area (SASA), radial distribution function (RDF), hydrogen bond (H-bond), Ramachandran plot analysis, secondary structure, and enzyme substrate affinity of the PPL in the various organic solvents were comparatively investigated. The results showed that the backbone and active pocket RMSD, and hydrophilic ASA of PPL in three solvents increase with the increase in the solvent LogP, while the Rg, hydrophobic ASA, and H-bond between the solvent and PPL decrease. Among the three organic solvents, DMSO acts as a better solvent, in which the PPL can be loose and extended, and retains its native backbone in DMSO compared to PRG and EtOH. Moreover, Ramachandran plot analysis indicated that the PPL structure quality in DMSO was higher than that in PRG and EtOH. Also, the molecular docking results showed that PPL in DMSO exhibited the highest enzyme-substrate affinity.
Project description:Severe water deficit and highly polluting effluent generation from leather industries have constantly been pressurizing the tanners to adopt cleaner leather processing systems. The present study aims to minimize the use of water by substituting it with non-aqueous green solvents and also to enhance the enzyme action in alpha-amylase based fiber opening process. The activity of alpha-amylase in select non-aqueous green solvents namely, heptane, polyethylene glycol 200 and propylene glycol is considerably higher by 62, 38 and 31% than in water, respectively. Comparable results are obtained for the catalytic efficiency of alpha-amylase and hence it is further validated in collagen fiber opening trials as well. Scanning electron micrographs, histological images and proteoglycan estimation supported the above findings at 1% alpha-amylase dosage. The final quality of the experimental leathers in terms of physical and bulk properties is comparable to that of control leathers. Recycling studies indicate that it is possible to replace water with green solvents for enzymatic fiber opening with the feasibility to recover more than 85% solvent-enzyme mixture and reuse without any additional alpha-amylase usage. Reduction in pollution load coupled with the efficient catalytic action of enzyme in non-aqueous media favors the present protocol for industrial applications.
Project description:Acid dissociation constants ( pKa$$ \mathrm{p}{K}_{\mathrm{a}} $$ ) are widely measured and studied, most typically in water. Comparatively few datasets and models for non-aqueous pKa$$ \mathrm{p}{K}_{\mathrm{a}} $$ values exist. In this work, we demonstrate how the pKa$$ \mathrm{p}{K}_{\mathrm{a}} $$ in one solvent can be accurately determined using reference data in another solvent, corrected by solvation energy calculations from the COSMO-RS method. We benchmark this approach in 10 different solvents, and find that pKa$$ \mathrm{p}{K}_{\mathrm{a}} $$ values calculated in six solvents deviate from experimental data on average by less than 1 pKa$$ \mathrm{p}{K}_{\mathrm{a}} $$ unit. We observe comparable performance on a more diverse test set including amino acids and drug molecules, with higher error for large molecules. The model performance in four other solvents is worse, with one MAE exceeding 3 pKa$$ \mathrm{p}{K}_{\mathrm{a}} $$ units; we discuss how such errors arise due to both model error and inconsistency in obtaining experimental data. Finally, we demonstrate how this technique can be used to estimate the proton transfer energy between different solvents, and use this to report a value of the proton's solvation energy in formamide, a quantity that does not have a consensus value in literature.