Project description:We present a comparative study between a series of well-known semiconductor polymers, used in efficient organic solar cells as hole transport materials (HTM), and the state-of-the art material used as hole transport material in perovskite solar cells: the spiro-OMeTAD. The observed differences in solar cell efficiencies are studied in depth using advanced photoinduced spectroscopic techniques under working illumination conditions. We have observed that there is no correlation between the highest occupied molecular orbital (HOMO) energy levels of the organic semiconductors and the measured open-circuit voltage (VOC). For instance, spiro-OMeTAD and P3HT have a comparable HOMO level of ~5.2 eV vs vacuum even though a difference in VOC of around 200 mV is recorded. This difference is in good agreement with the shift observed for the charge vs voltage measurements. Moreover, hole transfer from the perovskite to the HTM, estimated qualitatively from fluorescence quenching and emission lifetime, seems less efficient for the polymeric HTMs. Finally, the recombination currents from all devices were estimated by using the measured charge (calculated using photoinduced differential charging) and the carriers' lifetime and their value resulted in accordance with the registered short-circuit currents (JSC) at 1 sun.
Project description:Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm2, after a thermal aging test at 85 °C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.
Project description:The power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) are already higher than that of other thin film technologies, but laboratory cell-fabrication methods are not scalable. Here, we report an additive strategy to enhance the efficiency and stability of PSCs made by scalable blading. Blade-coated PSCs incorporating bilateral alkylamine (BAA) additives achieve PCEs of 21.5 (aperture, 0.08 cm2) and 20.0% (aperture, 1.1 cm2), with a record-small open-circuit voltage deficit of 0.35 V under AM1.5G illumination. The stabilized PCE reaches 22.6% under 0.3 sun. Anchoring monolayer bilateral amino groups passivates the defects at the perovskite surface and enhances perovskite stability by exposing the linking hydrophobic alkyl chain. Grain boundaries are reinforced by BAA and are more resistant to mechanical bending and electron beam damage. BAA improves the device shelf lifetime to >1000 hours and operation stability to >500 hours under light, with 90% of the initial efficiency retained.
Project description:Frequency resolved methods are widely used to determine device properties of perovskite solar cells. However, obtaining the electronic parameters for diffusion and recombination by impedance spectroscopy has been so far elusive, since the measured spectra do not present the diffusion of electrons. Here we show that intensity modulated photocurrent spectroscopy (IMPS) displays a high frequency spiraling feature determined by the diffusion-recombination constants, under conditions of generation of carriers far from the collecting contact. We present models and experiments in two different configurations: the standard sandwich-contacts solar cell device and the quasi-interdigitated back-contact (QIBC) device for lateral long-range diffusion. The results of the measurements produce the hole diffusion coefficient of D p = 0.029 cm2/s and lifetime of τ p = 16 μs for one cell and D p = 0.76 cm2/s and τ p = 1.6 μs for the other. The analysis in the frequency domain is effective to separate the carrier diffusion (at high frequency) from the ionic contact phenomena at a low frequency. This result opens the way for a systematic determination of transport and recombination features in a variety of operando conditions.
Project description:Perovskite solar cells have shown unprecedent performance increase up to 22% efficiency. However, their photovoltaic performance has shown fast deterioration under light illumination in the presence of humid air even with encapulation. The stability of perovskite materials has been unsolved and its mechanism has been elusive. Here we uncover a mechanism for irreversible degradation of perovskite materials in which trapped charges, regardless of the polarity, play a decisive role. An experimental setup using different polarity ions revealed that the moisture-induced irreversible dissociation of perovskite materials is triggered by charges trapped along grain boundaries. We also identified the synergetic effect of oxygen on the process of moisture-induced degradation. The deprotonation of organic cations by trapped charge-induced local electric field would be attributed to the initiation of irreversible decomposition.
Project description:Perovskite solar cells (PSCs) have been propelled into the limelight over the past decade due to the rapid-growing power conversion efficiency (PCE). However, the internal defects and the interfacial energy level mismatch are detrimental to the device performance and stability. In this study, it is demonstrated that a small amount of indium (In3+ ) ions in mixed cation and halide perovskites can effectively passivate the defects, improve the energy-level alignment, and reduce the exciton binding energy. Additionally, it is confirmed that In3+ ions can significantly elevate the initial carrier temperature, slow down the hot-carrier cooling rate, and reduce the heat loss before carrier extraction. The device with 1.5% of incorporated In3+ achieves a PCE of 22.4% with a negligible hysteresis, which is significantly higher than that of undoped PSCs (20.3%). In addition, the unencapsulated PSCs achieve long-term stability, which retain 85% of the original PCE after 3,000 h of aging in dry air. The obtained results demonstrate and promote the development of practical, highly efficient, and stable hot-carrier-enhanced PSCs.
Project description:In spite of the impressive efficiencies reported for perovskite solar cells (PSCs), key aspects of their working principles, such as electron injection at the contacts or the suitability of the utilization of a specific scaffold layer, are not yet fully understood. Increasingly complex scaffolds attained by the sequential deposition of TiO2 and SiO2 mesoporous layers onto transparent conducting substrates are used to perform a systematic characterization of both the injection process at the electron selective contact and the scaffold effect in PSCs. By forcing multiple electron injection processes at a controlled sequence of perovskite-TiO2 interfaces before extraction, interfacial injection effects are magnified and hence characterized in detail. An anomalous injection behavior is observed, the fingerprint of which is the presence of significant inductive loops in the impedance spectra with a magnitude that correlates with the number of interfaces in the scaffold. Analysis of the resistive and capacitive behavior of the impedance spectra indicates that the scaffolds could hinder ion migration, with positive consequences such as lowering the recombination rate and implications for the current-potential curve hysteresis. Our results suggest that an appropriate balance between these advantageous effects and the unavoidable charge transport resistive losses introduced by the scaffolds will help in the optimization of PSC performance.
Project description:Here, we study the influence of guanidinium (GUA) ions on the open-circuit voltage (V oc) in the (GUA) x (MA)1-x PbI3 based perovskite solar cells. We demonstrate that incorporation of GUA forms electronic and ionic accumulation regions at the interface of the electron transporting layer and perovskite absorber layer. Our electrochemical impedance spectroscopy results prove that the formed accumulation region is associated with the enhanced surface charge capacitance and photovoltage. Furthermore, we also demonstrate the influence of the GUA ions on the enhanced interfacial and bulk electronic properties due to more efficient charge transfer between the bulk and interfaces and the reduced electronic defect energy levels.
Project description:Nanocrystals based on halide perovskites offer a promising material platform for highly efficient lighting. Using transient optical spectroscopy, we study excitation recombination dynamics in manganese-doped CsPb(Cl,Br)3 perovskite nanocrystals. We find an increase in the intrinsic excitonic radiative recombination rate upon doping, which is typically a challenging material property to tailor. Supported by ab initio calculations, we can attribute the enhanced emission rates to increased charge carrier localization through lattice periodicity breaking from Mn dopants, which increases the overlap of electron and hole wave functions locally and thus the oscillator strength of excitons in their vicinity. Our report of a fundamental strategy for improving luminescence efficiencies in perovskite nanocrystals will be valuable for maximizing efficiencies in light-emitting applications.
Project description:Metal halide perovskite semiconductors possess outstanding characteristics for optoelectronic applications including but not limited to photovoltaics. Low-dimensional and nanostructured motifs impart added functionality which can be exploited further. Moreover, wider cation composition tunability and tunable surface ligand properties of colloidal quantum dot (QD) perovskites now enable unprecedented device architectures which differ from thin-film perovskites fabricated from solvated molecular precursors. Here, using layer-by-layer deposition of perovskite QDs, we demonstrate solar cells with abrupt compositional changes throughout the perovskite film. We utilize this ability to abruptly control composition to create an internal heterojunction that facilitates charge separation at the internal interface leading to improved photocarrier harvesting. We show how the photovoltaic performance depends upon the heterojunction position, as well as the composition of each component, and we describe an architecture that greatly improves the performance of perovskite QD photovoltaics.