Project description:Blue mold caused by Penicillium expansum is one of the most significant postharvest diseases of apples. Some microorganisms associated with the surface of ripening apples possess the ability to inhibit the growth of P. expansum. However, the existing literature about their colonization in the stages before ripening is not explored in depth. This study aims to characterize the antagonistic capacity of bacterial populations from five fruit development stages of 'Royal Gala' apples. The results have shown that the density of the bacterial populations decreases throughout the ripening stages of fruit (from 1.0 × 105 to 1.1 × 101 cfu/cm2). A total of 25 bacterial morphotypes (corresponding to five genera identified by 16S RNA) were differentiated in which Bacillus stood out as a predominant genus. In the in vitro antagonism tests, 10 Bacillus strains (40%) inhibited the mycelial growth of P. expansum from 30.1% to 60.1%, while in fruit bioassays, the same strains reduced the fruit rot ranging from 12% to 66%. Moreover, the bacterial strains with antagonistic activity increased in the ripening fruit stage. B. subtilis subsp. spiziennii M24 obtained the highest antagonistic activity (66.9% of rot reduction). The matrix-assisted laser desorption ionization- time of flight mass spectrometry analysis revealed that bacteria with antagonistic activity produce antifungal lipopeptides from iturin and fengycin families.
Project description:Malus sieversii from Central Asia is a progenitor of the modern domesticated apple (Malus × domestica). Several accessions of M. sieversii are highly resistant to the postharvest pathogen Penicillium expansum. A previous study identified the qM-Pe3.1 QTL on LG3 for resistance to P. expansum in the mapping population GMAL4593, developed using the resistant accession, M. sieversii -PI613981, and the susceptible cultivar "Royal Gala" (RG) (M. domestica), as parents. The goal of the present study was to characterize the transcriptomic response of susceptible RG and resistant PI613981 apple fruit to wounding and inoculation with P. expansum using RNA-Seq. Transcriptomic analyses 0-48 h post inoculation suggest a higher basal level of resistance and a more rapid and intense defense response to wounding and wounding plus inoculation with P. expansum in M. sieversii -PI613981 than in RG. Functional analysis showed that ethylene-related genes and genes involved in "jasmonate" and "MYB-domain transcription factor family" were over-represented in the resistant genotype. It is suggested that the more rapid response in the resistant genotype (Malus sieversii-PI613981) plays a major role in the resistance response. At least twenty DEGs were mapped to the qM-Pe3.1 QTL (M × d v.1: 26,848,396-28,424,055) on LG3, and represent potential candidate genes responsible for the observed resistance QTL in M. sieversii-PI613981. RT-qPCR of several of these genes was used to validate the RNA-Seq data and to confirm their higher expression in MS0.
Project description:Blue mold, a postharvest disease of pome fruits, is caused by the filamentous fungus Penicillium expansum. In addition to the economic losses caused by P. expansum, food safety can be compromised, as this pathogen is mycotoxigenic. In this study, forward and reverse genetic approaches were used to identify genes involved in blue mold infection in apple fruits. For this, we generated a random T-DNA insertional mutant library. A total of 448 transformants were generated and screened for the reduced decay phenotype on apples. Of these mutants, six (T-193, T-275, T-434, T-588, T-625, and T-711) were selected for continued studies and five unique genes were identified of interest. In addition, two deletion mutants (Δt-625 and Δt-588) and a knockdown strain (t-434KD) were generated for three loci. Data show that the ∆t-588 mutant phenocopied the T-DNA insertion mutant and had virulence penalties during apple fruit decay. We hypothesize that this locus encodes a glyoxalase due to bioinformatic predictions, thus contributing to reduced colony diameter when grown in methylglyoxal (MG). This work presents novel members of signaling networks and additional genetic factors that regulate fungal virulence in the blue mold fungus during apple fruit decay.
Project description:Penicillium italicum causes blue mold disease and leads to huge economic losses in citrus production. As a natural antifungal agent, clove essential oil (CEO), which is a generally recognized as safe (GRAS) substance, shows strong in vitro activity against fungal pathogens. However, few studies on CEO for controlling postharvest blue mold disease caused by P. italicum in citrus fruit have been reported. Our aims were to investigate the control efficacy and possible mechanisms involved of CEO against P. italicum. In the present study, CEO treatment inhibited the disease development of blue mold when applied at 0.05% to 0.8% (v/v), and with the effective concentration being obtained as 0.4% (v/v). Besides its direct antifungal activity, CEO treatment also spurred a rapid accumulation of H2O2 compared with untreated fruits, which might contribute to enhancing an increase in the activities of defense-related enzymes, such as β-1,3-glucanase (β-Glu), chitinase (CHI), phenylalanine ammonia-lyase (PAL), peroxidase (POD), polyphenol oxidase (PPO), and lipoxygenase (LOX) in citrus fruit. Results of real time-quantitative polymerase chain reaction (RT-qPCR) showed that the gene expressions of β-Glu, CHI, PAL, POD and PPO were up-regulated in CEO-treated fruits. At the same time, CEO treatment led to down-regulated expression of the LOX gene in citrus fruit. Clove essential oil effectively control the disease incidence of blue mold decay in citrus fruit by motivating the host-defense responses, suppressing the malondialdehyde (MDA) accumulation while enhancing the activities and gene expressions of defense-related enzymes. Our study provides an alternative preservative applying CEO to reduce postharvest fungal decay in citrus fruit.
Project description:BackgroundBlue mold is a globally important and economically impactful postharvest disease of apples caused by multiple Penicillium spp. There are currently four postharvest fungicides registered for blue mold control, and some isolates have developed resistance manifesting in decay on fungicide-treated fruit during storage. To date, mechanisms of fungicide resistance have not been explored in this fungus using a transcriptomic approach.ResultsWe have conducted a comparative transcriptomic study by exposing naturally-occurring difenoconazole (DIF) resistant (G10) and sensitive (P11) blue mold isolates to technical grade difenoconazole, an azole fungicide in the commercial postharvest product Academy (Syngenta Crop Protection, LLC). Dynamic changes in gene expression patterns were observed encompassing candidates involved in active efflux and transcriptional regulators between the resistant and sensitive isolates. Unlike other systems, 3 isoforms of cytochrome P450 monoxygenase (CYP51A-C) were discovered and expressed in both sensitive and resistant strains upon difenoconazole treatment. Active efflux pumps were coordinately regulated in the resistant isolate and were shown to mediate the global resistance response as their inhibition reversed the difenoconazole-resistant phenotype in vitro.ConclusionsOur data support the observation that global transcriptional changes modulate difenoconazole resistance in Penicillium spp. While the dogma of CYP51 overexpression is supported in the resistant isolate, our studies shed light on additional new mechanisms of difenoconazole resistance on a global scale in Penicillium spp. These new findings broaden our fundamental understanding of azole fungicide resistance in fungi, which has identified multiple genetic targets, that can be used for the detection, management, and abatement of difenoconazole-resistant blue mold isolates during long-term storage of apples.
Project description:Biofumigation with slow-release diffusers of essential oils (EOs) of basil, oregano, savoury, thyme, lemon, and fennel was assessed for the control of blue mould of apples, caused by Penicillium expansum. In vitro, the ability of the six EOs to inhibit the mycelial growth was evaluated at concentrations of 1.0, 0.5, and 0.1%. EOs of thyme, savoury, and oregano, at all three concentrations, and basil, at 1.0 and 0.5%, were effective in inhibiting the mycelial growth of P. expansum. In vivo, disease incidence and severity were evaluated on 'Opal' apples artificially inoculated with the pathogen and treated at concentrations of 1.0% and 0.5% of EOs. The highest efficacy in reducing blue mould was observed with EOs of lemon and oregano at 1.0% after 60 days of storage at 1 ± 1 °C (incidence of rot, 3 and 1%, respectively) and after a further 14 days of shelf-life at 15 ± 1 °C (15 and 17%). Firmness, titratable acidity, and total soluble solids were evaluated at harvest, after cold storage, and after shelf-life. Throughout the storage period, no evident phytotoxic effects were observed. The EOs used were characterised through GC-MS to analyse their compositions. Moreover, the volatile organic compounds (VOCs) present in the cabinets were characterised during storage using the SPME-GC-MS technique. The antifungal effects of EOs were confirmed both in vitro and in vivo and the possible mechanisms of action were hypothesised. High concentrations of antimicrobial and antioxidant compounds in the EOs explain the efficacy of biofumigation in postharvest disease control. These findings provide new insights for the development of sustainable strategies for the management of postharvest diseases and the reduction of fruit losses during storage.
Project description:Grape fruits with blue mold symptoms were collected from house storages in different locations in Korea and were investigated for their association with Penicillium species. A total of 12 isolates of Penicillium were isolated from the collected fruits. Based on morphological and cultural characteristics and β-tublin gene sequence data analysis, they were identified as P. bialowiezense, P. citrinum, P. echinulatum, P. expansum, P. solitum and unidentified Penicillium species. P. solitum was the predominant followed by P. expansum. P. bialowiezense and P. echinulatum were newly recorded in Korea. β-Tubulin gene sequences could be used to distinguish each species of Penicillium and the molecular groups were correlated well with the morphological species. The unidentified species was supposed to be a new species, not previously reported in literature.
Project description:Identification of miRNAs in citrus reticulata exosomes;Identification of potential target genes of exosomal miRNAs in penicillium italicum; Comparison of differentially expressed genes between citrus exosome-treatedpenicillium italicum and wild type