Project description:Fusarium oxysporum f. sp. phaseoli (Fop) J.B. Kendrich & W.C. Snyder is the causal agent of Fusarium wilt of common bean (Phaseolus vulgaris L.). The objective of this study was to develop microsatellite markers (SSRs) to characterize the genetic diversity of Fop. Two libraries enriched with SSRs were developed and a total of 40 pairs of SSRs were characterized. Out of these, 15 SSRs were polymorphic for 42 Fop isolates. The number of alleles varied from two to ten, with an average of four alleles per locus and an average PIC (Polymorphic Information Content) of 0.38. The genetic diversity assessed by microsatellites for Fop was low, as expected for an asexual fungus, and not associated with geographic origin, but they were able to detect enough genetic variability among isolates in order to differentiate them. Microsatellites are a robust tool widely used for genetic fingerprinting and population structure analyses. SSRs for Fop may be an efficient tool for a better understanding of the ecology, epidemiology and evolution of this pathogen.
Project description:BackgroundMembers of the F. oxysporium species complex (FOSC) in the f. sp. apii (Foa) are pathogenic on celery and those in f. sp. coriandrii (Foci) are pathogenic on coriander (=cilantro). Foci was first reported in California in 2005; a new and highly aggressive race 4 of Foa was observed in 2013 in California. Preliminary evidence indicated that Foa can also cause disease on coriander, albeit are less virulent than Foci. Comparative genomics was used to investigate the evolutionary relationships between Foa race 4, Foa race 3, and the Foci, which are all in FOSC Clade 2, and Foa race 2, which is in FOSC Clade 3.ResultsA phylogenetic analysis of 2718 single-copy conserved genes and mitochondrial DNA sequence indicated that Foa races 3 and 4 and the Foci are monophyletic within FOSC Clade 2; these strains also are in a single somatic compatibility group. However, in the accessory genomes, the Foci versus Foa races 3 and 4 differ in multiple contigs. Based on significantly increased expression of Foa race 4 genes in planta vs. in vitro, we identified 23 putative effectors and 13 possible pathogenicity factors. PCR primers for diagnosis of either Foa race 2 or 4 and the Foci were identified. Finally, mixtures of conidia that were pre-stained with different fluorochromes indicated that Foa race 4 formed conidial anastomosis tubes (CATs) with Foci. Foa race 4 and Foa race 2, which are in different somatic compatibility groups, did not form CATs with each other.ConclusionsThere was no evidence that Foa race 2 was involved in the recent evolution of Foa race 4; Foa race 2 and 4 are CAT-incompatible. Although Foa races 3 and 4 and the Foci are closely related, there is no evidence that either Foci contributed to the evolution of Foa race 4, or that Foa race 4 was the recent recipient of a multi-gene chromosomal segment from another strain. However, horizontal chromosome transfer could account for the major difference in the accessory genomes of Foa race 4 and the Foci and for their differences in host range.
Project description:Fusarium oxysporum f. sp. cucumerinum (Foc) is the causal pathogen of cucumber Fusarium wilt resulting in losses to cucumber production. To investigate the effects of the selective pressures of host plants on the virulence of Foc, a low virulence isolate, foc-3b, was successively inoculated on resistant and susceptible cucumber cultivars for five generations. The virulence of the original isolate diverged; virulence was significantly strengthened after serial passage on the resistant cultivar and weakened on the susceptible plants (p ˂ .05). The expression of four virulence-related genes of F. oxysporum, G-protein α subunit gene fga1, sucrose nonfermenting 1 gene snf1, F-box protein gene frp1, and Class V chitin synthase gene chsV, was quantified using real-time PCR. All genes were significantly upregulated after serial passage on the resistant cultivar, compared to the original strain, and the expression of snf1 was downregulated in strains re-isolated from the susceptible plants (p ˂ .05). A significant positive correlation was found between the expression levels of gene snf1, frp1, and chsV and disease severity of cucumber Fusarium wilt, suggesting these genes may impact virulence differentiation. This study will improve the management of cucumber Fusarium wilt and provide insight into the mechanisms underlying virulence of F. oxysporum.
Project description:BackgroundFusarium oxysporum f. sp. lycopersici (Fol) is a compendium of pathogenic and non-pathogenic fungal strains. Pathogenic strains may cause vascular wilt disease and produce considerable losses in commercial tomato plots. To gain insight into the molecular mechanisms mediating resistance to Fol in tomato, the aim of our study was to characterize the transcriptional response of three cultivars (CT1, CT2 and IAC391) to a pathogenic (Fol-pt) and a non-pathogenic (Fo-npt) strain of Fo.ResultsAll cultivars exhibited differentially expressed genes in response to each strain of the fungus at 36 h post-inoculation. For the pathogenic strain, CT1 deployed an apparent active defense response that included upregulation of WRKY transcription factors, an extracellular chitinase, and terpenoid-related genes, among others. In IAC391, differentially expressed genes included upregulated but mostly downregulated genes. Upregulated genes mapped to ethylene regulation, pathogenesis regulation and transcription regulation, while downregulated genes potentially impacted defense responses, lipid transport and metal ion binding. Finally, CT2 exhibited mostly downregulated genes upon Fol-pt infection. This included genes involved in transcription regulation, defense responses, and metal ion binding.ConclusionsResults suggest that CT1 mounts a defense response against Fol-pt. IAC391 exhibits an intermediate phenotype whereby some defense response genes are activated, and others are suppressed. Finally, the transcriptional profile in the CT2 hints towards lower levels of resistance. Fo-npt also induced transcriptional changes in all cultivars, but to a lesser extent. Results of this study will support genetic breeding programs currently underway in the zone.
Project description:The continued dispersal of Fusarium oxysporum f. sp. cubense Tropical race 4 (FocTR4), a quarantine soil-borne pathogen that kills banana, has placed this worldwide industry on alert and triggered enormous pressure on National Plant Protection (NPOs) agencies to limit new incursions. Accordingly, biosecurity plays an important role while long-term control strategies are developed. Aiming to strengthen the contingency response plan of Ecuador against FocTR4, a population biology study-including phylogenetics, mating type, vegetative compatibility group (VCG), and pathogenicity testing-was performed on isolates affecting local bananas, presumably associated with race 1 of F. oxysporum f. sp. cubense (Foc). Our results revealed that Foc populations in Ecuador comprise a single clonal lineage, associated with VCG0120. The lack of diversity observed in Foc populations is consistent with a single introduction event from which secondary outbreaks originated. The predominance of VCG0120, together with previous reports of its presence in Latin America countries, suggests this group as the main cause of the devastating Fusarium wilt epidemics that occurred in the 1950s associated to the demise of 'Gros Michel' bananas in the region. The isolates sampled from Ecuador caused disease in cultivars that are susceptible to races 1 and 2 under greenhouse experiments, although Fusarium wilt symptoms in the field were only found in 'Gros Michel'. Isolates belonging to the same VCG0120 have historically caused disease on Cavendish cultivars in the subtropics. Overall, this study shows how Foc can be easily dispersed to other areas if restriction of contaminated materials is not well enforced. We highlight the need of major efforts on awareness and monitoring campaigns to analyze suspected cases and to contain potential first introduction events of FocTR4 in Ecuador.
Project description:The onion basal rot disease is a worldwide threat caused by species of the genus Fusarium. Today, Israel's control of this disease is limited to a four-year growth cycle and Metam sodium soil disinfection. Here, commercial chemical fungicides were evaluated as control treatments against two of the primary pathogens involved, F. oxysporum f. sp. cepae and F. Acutatum. Out of 10 fungicides tested on culture plates, 3, Prochloraz, Azoxystrobin + Tebuconazole, and Fludioxonil + Sedaxen, had strong inhibitory effects on mycelial growth and were selected and tested in seeds in vitro. The preparations were applied as a seed coating and tested in two commercial cultivars, Riverside (Orlando, white cv.) and Noam (red cv.). Prochloraz (0.3% w/w concentration), the most promising compound, was efficient in reducing the Noam cv. sprouts' disease symptoms. This preparation had no harmful in situ-toxicity effect and did not influence the plants' seed germination and early development. In Noam cv. potted 30-day-old sprouts, the Prochloraz treatment was able to reduce the harmful impact of F. oxysporum f. sp. cepae. on the seedlings' wet biomass, but was not effective in the Riverside cv. or against the F. acutatum pathogen. This suggests that future protective strategies must include an effective protective suit tailored to each of the pathogen species involved and the onion cultivar. The methods presented in this work can be applied for rapidly scanning multiple compounds while gradually ruling out ineffective ones. Eventually, this screening will enable field testing of the highest potential fungicides that successfully pass the pot experiments.
Project description:Fusarium wilt of lettuce is found throughout the world, causing significant yield losses. Lettuce is the most-cultivated leafy vegetable in Greece, affected by a large number of foliar and soil-borne pathogens. In this study, 84 isolates of Fusarium oxysporum, obtained from soil-grown lettuce plants exhibiting wilt symptoms, were characterized as belonging to race 1 of F. oxysporum f. sp. lactucae based on sequence analysis of the translation elongation factor 1-alpha (TEF1-α) gene and the rDNA intergenic spacer (rDNA-IGS) region. The isolates were also assigned to one single race through PCR assays with specific primers targeting race 1 and race 4 of the pathogen. In addition, four representative isolates were confirmed to be associated with race 1 based on the pathogenicity tests with a set of differential lettuce cultivars. Artificial inoculations on the most commonly cultivated lettuce cultivars in Greece revealed that the tested cultivars varied regarding their susceptibility to F. oxysporum f. sp. lactucae race 1. Cultivars (cvs.) "Cencibel" and "Lugano" were found to be highly susceptible, while cvs. "Sandalina" and "Starfighter" were the most resistant ones. Expression analysis of 10 defense-related genes (PRB1, HPL1, LTC1, SOD, ERF1, PAL1, LOX, MPK, BG, and GST) was carried out on artificially inoculated lettuce plants of the four above cultivars at different time points after inoculation. In resistant cultivars, a higher induction rate was observed for all the tested genes in comparison with the susceptible ones. Moreover, in resistant cultivars, all genes except LTC1, MPK, and GST showed their highest induction levels in their earliest stages of infection. The results of this study are expected to contribute to the implementation of an integrated management program to control Fusarium wilt of lettuce, based mainly on the use of resistant cultivars.
Project description:The genomes of many filamentous fungi consist of a 'core' part containing conserved genes essential for normal development as well as conditionally dispensable (CD) or lineage-specific (LS) chromosomes. In the plant-pathogenic fungus Fusarium oxysporum f. sp. lycopersici, one LS chromosome harbours effector genes that contribute to pathogenicity. We employed flow cytometry to select for events of spontaneous (partial) loss of either the two smallest LS chromosomes or two different core chromosomes. We determined the rate of spontaneous loss of the 'effector' LS chromosome in vitro at around 1 in 35 000 spores. In addition, a viable strain was obtained lacking chromosome 12, which is considered to be a part of the core genome. We also isolated strains carrying approximately 1-Mb deletions in the LS chromosomes and in the dispensable core chromosome. The large core chromosome 1 was never observed to sustain deletions over 200 kb. Whole-genome sequencing revealed that some of the sites at which the deletions occurred were the same in several independent strains obtained for the two chromosomes tested, indicating the existence of deletion hotspots. For the core chromosome, this deletion hotspot was the site of insertion of the marker used to select for loss events. Loss of the core chromosome did not affect pathogenicity, whereas loss of the effector chromosome led to a complete loss of pathogenicity.
Project description:Fusaric acid (FA) is an important secondary metabolite of many Fusarium species and involved in the wilt symptoms caused in banana by Fusarium oxysporum f. sp. cubense (Foc). To investigate the evolution characteristics of the 12 Foc FA biosynthetic genes (FUB), coding sequences of the 12 FUB genes and three housekeeping genes, EF-1α/RPB1/RPB2 (translation elongation factor-1α/RNA polymerase II subunit I/RNA polymerase II subunit II), were subjected to genetic diversity analysis, phylogenetic analysis, recombination detection, and selective pressure analysis. The results of selective pressure analysis showed that the 15 genes were mainly subjected to negative selection. However, a significantly higher number of silent mutations, which could not be simply explained by selective pressure difference, were observed in the 12 FUB genes in Foc than in the three housekeeping genes. Infraspecies phylogeny and recombination detection analysis showed that significantly more horizontal gene transfer (HGT) events (normalized) had occurred in the FUB genes than in the three housekeeping genes. In addition, many of these events involved outgroup isolates and significantly increased the genetic diversity of FUB genes in Foc. The infraspecies phylogenetic analysis suggested that the polyphyletic phylogeny proposed for Foc requires further discussion, and the divergence of race 1, race 4, and the common ancestor of several F. oxysporum (Fo) isolates pathogenic to nonbanana plants should have diverged over a short period. Finally, our results suggest that the FUB genes in Fo should have benefited from HGT to gain a relatively high genetic diversity to respond to different host plants and environments despite mainly being subject to negative selection.
Project description:Fusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc) race 1, is a major disease of bananas in East Africa. Triploid East African Highland (Matooke) bananas are resistant to Foc race 1, but the response of diploid (Mchare and Muraru) bananas to the fungus is largely unknown. A breeding project was initiated in 2014 to increase crop yield and improve disease and pest resistance of diploid and triploid East African Highland bananas. In this study, eight Mchare cultivars were evaluated for resistance to Foc race 1 in the field in Arusha, Tanzania. In addition, the same eight Mchare cultivars, as well as eight Muraru cultivars, 27 Mchare hybrids, 60 Matooke hybrids and 19 NARITA hybrids were also screened in pot trials. The diploid Mchare and Muraru cultivars were susceptible to Foc race 1, whereas the responses of Mchare, NARITAs and Matooke hybrids ranged from susceptible to resistant. The Mchare and Matooke hybrids resistant to Foc race 1 can potentially replace susceptible cultivars in production areas severely affected by the fungus. Some newly bred Matooke hybrids became susceptible following conventional breeding, suggesting that new hybrids need to be screened for resistance to all Foc variants.