Project description:Sacbrood virus (SBV) is a picorna-like virus that affects honey bees (Apis mellifera) and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV) in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB) probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.
Project description:Avian influenza virus (AIV) can infect a variety of avian species and mammals, leading to severe economic losses in poultry industry and posing a substantial threat to public health. Currently, traditional virus isolation and identification is inadequate for the early diagnosis because of its labor-intensive and time-consuming features. Real-time RT-PCR (RRT-PCR) is an ideal method for the detection of AIV since it is highly specific, sensitive and rapid. In addition, as the new quencher MGB is used in RRT-PCR, it only needs shorter probe and helps the binding of target gene and probe. In this study, a pan-AIV RRT-PCR for the detection of all AIVs and H5-AIV RRT-PCR for detection of H5 AIV based on NP gene of AIV and HA gene of H5 AIV were successfully established using Taqman-MGB method. We tested 14 AIV strains in total and the results showed that the pan-AIV RRT-PCR can detect AIV of various HA subtypes and the H5-AIV RRT-PCR can detect H5 AIV circulating in poultry in China in recent three years, including H5 viruses of clade 7.2, clade 2.3.4.4 and clade 2.3.2.1. Furthermore, the multiplex detection limit for pan-AIV and H5-AIV RRT-PCR was 5 copies per reaction. When this multiplex method was applied in the detection of experimental and live poultry market samples, the detection rates of pan-AIV and H5 AIV in RRT-PCR were both higher than the routine virus isolation method with embryonated chicken eggs. The multiplex RRT-PCR method established in our study showed high sensitivity, reproducibility and specificity, suggesting the promising application of our method for surveillance of both pan AIV and prevalent H5 AIV in live poultry markets and clinical samples.
Project description:Leber hereditary optic neuropathy (LHON) is a degenerative disease of the optic nerve associated with one of three mitochondrial DNA (mtDNA) m.3460G>A, m.11778G>A and m.14484T>C mutations. Although several procedures are available to genotype these mutations, quantitative approaches with rapid, low-cost and easy to handle advantages for three LHON mtDNA mutations are rarely reported. Here, we firstly developed a "one-step" tetra-primer amplification-refractory mutation system (T-ARMS) PCR for qualitative genotyping of three LHON mtDNA mutations. Subsequently, we established single, duplex and triplex TaqMan MGB probe-based fluorescence quantitative PCR (qPCR) assays to perform both qualitative and quantitative analyses of three LHON mtDNA mutations. Standard curves based on tenfold diluted plasmid standard exhibited high specificity and sensitivity, stable repeatability and reliable detectable ability of TaqMan probe qPCR assays without cross-reactivity upon probes combination. Moreover, by comparing with SYBR Green qPCR, we further validated the feasibility of the triplex-probe qPCR assay for the quantitative detection of mtDNA copy number in blood samples. In conclusion, our study describes a rapid, low-cost, easy to-handle, and high-throughput TaqMan-MGB probe qPCR assay to perform both qualitative and quantitative analysis of three primary LHON mtDNA mutations, offering a promising approach for genetic screening and testing of LHON mutations.
Project description:BACKGROUND: Anatid herpesvirus 1 (AHV-1) is an alphaherpesvirus associated with latent infection and mortality in ducks and geese and is currently affecting the world-wide waterfowl production severely. Here we describe a fluorescent quantitative real-time PCR (FQ-PCR) method developed for fast measurement of AHV-1 DNA based on TaqMan MGB technology. RESULTS: The detection limit of the assay was 1 x 101 standard DNA copies, with a sensitivity of 2 logs higher than that of the conventional gel-based PCR assay targeting the same gene. The real-time PCR was reproducible, as shown by satisfactory low intra-assay and inter-assay coefficients of variation. CONCLUSION: The high sensitivity, specificity, simplicity and reproducibility of the AHV-1 fluorogenic PCR assay, combined with its wide dynamic range and high throughput, make this method suitable for a broad spectrum of AHV-1 etiologically related application.
Project description:The epidemic of goose astrovirus (GoAstV) caused huge losses to the poultry industry. Epidemiological studies in China revealed 2 circulating genotypes of GoAstV, but there is a lack of differential diagnosis tools. By analyzing all published genomes of GoAstV, this study designed specific PCR primers and Taqman probes to recognize different genotypes of GoAstV. After optimization and verification, this study developed a Taqman-based real-time quantitative PCR method that is capable of differential diagnosis. The established qPCR exhibited detection limitations of 100 copies/μL or 10 copies/μL, respectively, for GoAstV genotype 1 and genotype 2, and showed no false positive for other common avian viruses. This method was then used to analyze 72 samples collected from different regions in Jiangxi, and the results were verified by genome sequencing and phylogenetic analysis. These results revealed a complex coinfection of GoAstV different genotypes in China, highlighting the importance of long-term focus on the prevalence and genome evolution of GoAstV.
Project description:Background: There has been global concern about the safety and accuracy of traditional Chinese patent medicines (TCPMs). Panax notoginseng, also known as sanqi, is an important constituent of TCPMs. However, identifying the species contained in TCPMs is challenging due to the presence of multiple ingredients and the use of various preparation processes. Objective: To detect P. notoginseng in TCPMs. Methods: A TaqMan probe-based qPCR assay was constructed and validated with DNA extracted from P. notoginseng and adulterants. In total, 75 samples derived from 25 batches of TCPMs were tested using the constructed qPCR method. Results: A TaqMan probe-based qPCR assay targeting P. notoginseng was established. The constructed qPCR assay could specifically discriminate P. notoginseng from Panax ginseng, Panax quinquefolium and Curcuma aromatica Salisb. cv. Wenyujin. The sensitivity study showed that the detectable DNA template concentration of P. notoginseng for this qPCR assay was 0.001 ng/μl. All 75 samples from TCPMs were confirmed to contain P. notoginseng by the qPCR assay. Conclusions: The qPCR method can accurately identify P. notoginseng in TCPMs and is promising as a powerful tool for quality control and market regulation.
Project description:Megriviruses have been identified from fecal samples in wild pigeons in Hong Kong (China) and Hungary. In this study, the genomic sequences of pigeon Megriviruses (PiMeVs) were downloaded from GenBank and compared. Based on the genetic comparison results, a pair of primers and TaqMan probe were designed based on the conserved sequences of the 3C gene (located in the P3 gene coding region), and a TaqMan real-time PCR method (TaqMan-qPCR) was established. The standard curve of the TaqMan-qPCR had an axial intercept of 39.74 and a slope of -3.2475 with a linear correlation (R2) of 1.00 and an efficiency of 103.2%. No cross-amplification signal was found from other pigeon viruses (such as avian influenza virus, pigeon paramyxovirus type I, pigeon torque teno virus, pigeon adenovirus, and pigeon circovirus). The limit of detection concentration was 53.6 copies/μL. The intra- and interassay results were less than 1.0% based on the reproducibility test. Furthermore, field samples investigation by the established TaqMan-qPCR method showed that positive signals can be found from racing pigeon fecal samples and embryos. Thus, our data suggested that this visible TaqMan-qPCR method is sensitive, specific, and reproducible. Moreover, we first confirmed the presence of pigeon Megrivirus infection in racing pigeon embryos, indicating that the virus may be vertically transmitted. This study provides a reference basis for further understanding the epidemiology of PiMeVs.
Project description:The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis.
Project description:BACKGROUND: Anatid herpesvirus 1 (AHV-1) is known for the difficulty of monitoring and controlling, because it has a long period of asymptomatic carrier state in waterfowls. Furthermore, as a significant essential agent for viral attachment, release, stability and virulence, gC (UL44) gene and its protein product (glycoprotein C) may play a key role in the epidemiological screening. The objectives of this study were to rapidly, sensitively, quantitatively detect gC gene of AHV-1 and provide the underlying basis for further investigating pcDNA3.1-gC DNA vaccine in infected ducks by TaqMan fluorescent quantitative real-time PCR assay (FQ-PCR) with pcDNA3.1-gC plasmid. RESULTS: The repeatable and reproducible quantitative assay was established by the standard curve with a wide dynamic range (eight logarithmic units of concentration) and very good correlation values (1.000). This protocol was able to detect as little as 1.0 x 101 DNA copies per reaction and it was highly specific to AHV-1. The TaqMan FQ-PCR assay successfully detected the gC gene in tissue samples from pcDNA3.1-gC and AHV-1 attenuated vaccine (AHV-1 Cha) strain inoculated ducks respectively. CONCLUSIONS: The assay offers an attractive method for the detection of AHV-1, the investigation of distribution pattern of AHV-1 in vivo and molecular epidemiological screening. Meanwhile, this method could expedite related AHV-1 and gC DNA vaccine research.
Project description:Equine Piroplasmosis (EP) is an infectious disease caused by the hemoprotozoan parasites Theileria equi, Babesia caballi, and the recently identified species T. haneyi. Hereby, we used a multiplex PCR (mPCR) targeting the 18S rRNA gene of T. equi and B. caballi for the simultaneous detection of EP in Egyptian equids and examined the presence of T. haneyi infections in Egypt. Blood samples from 155 equids (79 horses and 76 donkeys) collected from different governorates of Egypt were examined by mPCR and PCR targeting T. hayeni. The mPCR method revealed a prevalence of T. equi of 20.3% in horses and of 13.1% in donkeys and a prevalence of B. caballi of 1.2% in horses. B. caballi was not detected in donkeys in the current study. The mPCR method also detected coinfections with both species (2.5% and 1.3% in horses and donkeys, respectively). Additionally, we report the presence of T. haneyi in Egypt for the first time in 53.1% of the horse and 38.1% of the donkey tested samples. Coinfection with T. haneyi and T. equi was found in 13.5% of the samples, while infection with the three EP species was found in 1.9% of the samples.