Project description:Solvent extraction is used widely for chemical separations and environmental remediation. Although the kinetics and efficiency of this process rely upon the formation of ion-extractant complexes, it has proven challenging to identify the location of ion-extractant complexation within the solution and its impact on the separation. Here, we use tensiometry and X-ray scattering to characterize the surface of aqueous solutions of lanthanide chlorides and the water-soluble extractant bis(2-ethylhexyl) phosphoric acid (HDEHP), in the absence of a coexisting organic solvent. These studies restrict ion-extractant interactions to the aqueous phase and its liquid-vapor interface, allowing us to explore the consequences that one or the other is the location of ion-extractant complexation. Unexpectedly, we find that light lanthanides preferentially occupy the liquid-vapor interface. This contradicts our expectation that heavy lanthanides should have a higher interfacial density since they are preferentially extracted by HDEHP in solvent extraction processes. These results reveal the antagonistic role played by ion-extractant complexation within the aqueous phase and clarify the advantages of complexation at the interface. Extractants in common use are often soluble in water, in addition to their organic phase solubility, and similar effects to those described here are expected to be relevant to a variety of separations processes.
Project description:Rare earth metals are used in semiconductors, solar cells and catalysts. This review focuses on the background of oxide metallurgy technologies, the chemical and physical properties of rare earth (RE) metals, the background of oxide metallurgy, the functions of RE metals in steelmaking, and the influences of RE metals on steel microstructures. Future prospects for RE metal applications in steelmaking are also presented.
Project description:Microalgae are a promising sustainable food source with high nutritional value and environmental benefits. This study investigated the presence of toxic metals and rare earth elements (REEs) in 68 microalgal-based food products and conducted a probabilistic risk assessment to evaluate potential health risks. The findings revealed high detection rates of REEs (80.96% to 100%) and heavy metals (83.82% to 100%), with REE concentrations ranging from 0.0055 to 0.5207 mg/kg. Heavy metals were detected at the following average concentrations: As (2.80 mg/kg) > Cr (1.27 mg/kg) > Pb (0.30 mg/kg) > Cd (0.20 mg/kg) > Hg (0.01 mg/kg). Carcinogenic risk analysis for Cd (3.004 × 10-3), Cr (1.484 × 10-3), and As (1.1283 × 10-2) indicated that 95th percentile values exceeded established safety thresholds (10-4). These findings highlight the critical need for stringent monitoring and the establishment of comprehensive regulatory frameworks for the safety of novel microalgae foods.
Project description:Elucidating the solvation and size effects on the reactions between water and neutral metals is crucial for understanding the microscopic mechanism of the catalytic processes but has been proven to be a challenging experimental target due to the difficulty in size selection. Here, MO4H6 and M2O6H7 (M = Sc, Y, La) complexes were synthesized using a laser-vaporization cluster source and characterized by size-specific infrared-vacuum ultraviolet spectroscopy combined with quantum chemical calculations. The MO4H6 and M2O6H7 complexes were found to have H˙M(OH)3(H2O) and M2(μ2-OH)2(η1-OH)3(η1-OH2) structures, respectively. A combination of experiments and theory revealed that the formation of H˙M(OH)3(H2O) and M2(μ2-OH)2(η1-OH)3(η1-OH2) is both thermodynamically exothermic and kinetically facile in the gas phase. The results indicated that upon the addition of water to H˙M(OH)3, the feature of the hydrogen radical is retained. In the processes from mononuclear H˙M(OH)3 to binuclear M2(μ2-OH)2(η1-OH)3(η1-OH2), the active hydrogen atom undergoes the evolution from hydrogen radical → bridging hydrogen → metal hydride → hydrogen bond, which is indicative of a reduced reactivity. The present system serves as a model for clarifying the solvation and size effects on the reactions between water and neutral rare-earth metals and offers a general paradigm for systematic studies on a broad class of the reactions between small molecules and metals at the nanoscale.
Project description:We report the synthesis and characterization of two types of new mixed-ligand rare earth complexes: tetracoordinate (NacNacMes)Ln(BIANdipp) (Ln = Dy (1), Er (2) and Y (3)) and pentacoordinate (NacNacMes)Ln(APdipp)(THF) (Ln = Dy (4), Er (5) and Y (6)). The first three compounds were prepared by the reaction of [(BIANDipp)LnI] with potassium β-diketiminate. The salt metathesis of β-diketiminato-supported rare earth dichlorides (NacNacMes)LnCl2(THF)2 with sodium o-amidophenolate results in compounds 4-6. The crystal structures of complexes 1-6 were determined by single-crystal analysis. The combination of bulky monoanionic N-mesityl-substituted β-diketiminates with sterically hindered redox-active ligands led to the very low coordination numbers of rare earths and strong distortion of the chelate ligands.
Project description:Direct lithium extraction (DLE) from natural surface and geothermal brines is very challenging due to the low ratio of lithium to other metals, and the lack of suitable materials that bind lithium with sufficiently high selectivity. In this paper, a synergistic solvent extraction system is described that comprises a liquid ion exchanger (saponified bis(2-ethylhexyl)dithiophosphoric acid) and a lithium-selective ligand (2,9-dibutyl-1,10-phenanthroline) in an aliphatic diluent. The extraction mechanism was investigated and was confirmed to involve the binding of lithium to the selective ligand, while the liquid ion exchanger facilitates the transfer of metal ions from the aqueous to the organic phase. The variables influencing the selectivity for lithium were also determined. The selectivity improved greatly in highly concentrated salt solutions with low concentrations of lithium, rendering the process ideal for the sequestration of lithium from natural brines. Stripping could be achieved with stoichiometric amounts of hydrochloric acid. Applying the system to a synthetic geothermal brine, an extraction percentage of 68% was obtained in a single stage, with separation factors of 620 ± 20 for lithium over sodium, 3100 ± 200 for lithium over potassium, 596 ± 9 for lithium over magnesium and 2290 ± 80 for lithium over calcium.
Project description:The complexes of La, Ce, Nd, Sm, Eu, Tb and Yb with benzoxazolyl-phenolate, benzothiazolyl-phenolate, benzoxazolyl-naphtholate, benzothiazolyl-naphtholate and 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione ligands were treated with n,γ-irradiation upon a sustained (45 h, absorbed dose of 120 krad, flux of neutrons 5·1013 n/cm2) and a pulse mode (3 ms, absorbed dose of 130 krad, flux of neutrons 3.6·1013 n/cm2). It was found that main characteristics of the compounds (shape of substance, color, IR absorption and photoluminescent spectra) have not changed. With an example of cerium complex [Ce(OON)3]2 it was revealed that the molecular structure of compounds after strong pulse irradiation also does not changed. However, computer simulations of neutron exposure on the same complexes showed significant shift of metal atoms and ligands. Possible reasons for the detected discrepancy between experimental and calculated data are discussed.
Project description:The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance.
Project description:The application of deep eutectic solvents (DESs) to dissolve metal oxides in lithium-ion batteries (LIBs) recycling represents a green technological alternative to the mineral acids employed in hydrometallurgical recycling processes. However, DESs are much more expensive than mineral acids and must be reused to ensure economic feasibility of LIB recycling. To evaluate DES reusability, the role of the choline chloride-ethylene glycol DES decomposition products on metal oxides dissolution was investigated. The temperatures generally applied to carry on this DES leaching induced the formation of decomposition products that ultimately improved the ability to dissolve LIB metal oxides. The characterization of DES decomposition products revealed that the improved metal dissolution was mainly determined by the formation of Cl3 - , which was proposed to play a pivotal role in the oxidative dissolution of LIB metal oxides.
Project description:We develop a minimal model for the prediction of solvent extraction. We consider a rare earth extraction system for which the solvent phase is similar to water-poor microemulsions. All physical molecular quantities used in the calculation can be measured separately. The model takes into account competition complexation, mixing entropy of complexed species, differences of salt concentrations between the two phases, and the surfactant nature of extractant molecules. We consider the practical case where rare earths are extracted from iron nitrates in the presence of acids with a common neutral complexing extractant. The solvent wetting of the reverse aggregates is taken into account via the spontaneous packing. All the water-in-oil reverse aggregates are supposed to be spherical on average. The minimal model captures several features observed in practice: reverse aggregates with different water and extractant content coexist dynamically with monomeric extractant molecules at and above a critical aggregate concentration (CAC). The CAC decreases upon the addition of electrolytes in the aqueous phase. The free energy of transfer of an ion to the organic phase is lower than the driving complexation. The commonly observed log-log relation used to determine the apparent stoichiometry of complexation is valid as a guideline but should be used with care. The results point to the fact that stoichiometry, as well as the probabilities of a particular aggregate, is dependent on the composition of the entire system, namely the extractant and the target solutes' concentrations. Moreover, the experimentally observed dependence of the extraction efficiency on branching of the extractant chains in a given solvent can be quantified. The evolution of the distribution coefficient of particular rare earth, acid, or other different metallic cations can be studied as a function of initial extractant concentration through the whole region that is typically used by chemical engineers. For every chemical species involved in the calculation, the model is able to predict the exact equilibrium concentration in both the aqueous and the solvent phases at a given thermodynamic temperature.