Project description:Accumulating evidence suggests that aberrant innate immunity is closely linked to metabolic diseases, including type 2 diabetes. In particular, activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and subsequent secretion of interleukin 1β (IL-1β) are critical determinants that precipitate disease progression. The seeds of annatto (Bixa orellana L.) contain tocotrienols (T3s), mostly (>90%) in the δ form (δT3). The aim of this study was to determine whether annatto T3 is effective in attenuating NLRP3 inflammasome activation in macrophages. Our results showed that annatto δT3 significantly attenuated NLRP3 inflammasome by decreasing IL-1β reporter activity, IL-1β secretion, and caspase-1 cleavage against lipopolysaccharide (LPS) followed by nigericin stimulation. With regard to mechanism, annatto δT3 1) reduced LPS-mediated priming of the inflammasome and 2) dampened reactive oxygen species production, the second signal required for assembly of the NLRP3 inflammasome in macrophages. Our work suggests that annatto δT3 may hold therapeutic potential for delaying the onset of NLRP3 inflammasome-associated chronic metabolic diseases.
Project description:The NLRP3 inflammasome plays a critical role in mediating the innate immune defense against pathogenic infections, but aberrant activation of NLRP3 inflammasome has been linked to a variety of inflammatory diseases. Thus targeting the NLRP3 inflammasome represents a promising therapeutic for the treatment of such diseases. Scutellarin is a flavonoid isolated from Erigeron breviscapus (Vant.) Hand.-Mazz. and has been reported to exhibit potent anti-inflammatory activities, but the underlying mechanism is only partly understood. In this study, we aimed to investigate whether scutellarin could affect the activation of NLRP3 inflammasome in macrophages. The results showed that scutellarin dose-dependently reduced caspase-1 activation and decreased mature interleukin-1β (IL-1β) release in lipopolysaccharide (LPS)-primed macrophages upon ATP or nigericin stimulation, indicating that scutellarin inhibited NLRP3 inflammasome activation in macrophages. Consistent with this, scutellarin also suppressed pyroptotic cell death in LPS-primed macrophages treated with ATP or nigericin. ATP or nigericin-induced ASC speck formation and its oligomerization were blocked by scutellarin pre-treatment. Intriguingly, scutellarin augmented PKA-specific phosphorylation of NLRP3 in LPS-primed macrophages, which was completely blocked by selective PKA inhibitor H89, suggesting that PKA signaling had been involved in the action of scutellarin to suppress NLRP3 inflammasome activation. Supporting this, the inhibitory effect of scutellarin on NLRP3 inflammasome activation was completely counteracted by H89 or adenyl cyclase inhibitor MDL12330A. As NLRP3-dependent release of IL-1β has a critical role in sepsis, the in vivo activity of scutellarin was assayed in a mouse model of bacterial sepsis, which was established by intraperitoneally injection of a lethal dose of viable Escherichia coli. Oral administration of scutellarin significantly improved the survival of mice with bacterial sepsis. In line with this, scutellarin treatment significantly reduced serum IL-1β levels and attenuated the infiltration of inflammatory cells in the liver of E. coli-infected mice. These data indicated that scutellarin suppressed NLRP3 inflammasome activation in macrophages by augmenting PKA signaling, highlighting its potential therapeutic application for treating NLRP3-related inflammatory diseases.
Project description:Coronary microembolization (CME), a common reason for periprocedural myocardial infarction (PMI), bears very important prognostic implications. However, the molecular mechanisms related to CME remain largely elusive. Statins have been shown to prevent PMI, but the underlying mechanism has not been identified. Here, we examine whether the NLRP3 inflammasome contributes to CME-induced cardiac injury and investigate the effects of statin therapy on CME. In vivo study, mice with CME were treated with 40 mg/kg/d rosuvastatin (RVS) orally or a selective NLRP3 inflammasome inhibitor MCC950 intraperitoneally (20 mg/kg/d). Mice treated with MCC950 and RVS showed improved cardiac contractile function and morphological changes, diminished fibrosis and microinfarct size, and reduced serum lactate dehydrogenase (LDH) level. Mechanistically, RVS decreased the expression of NLRP3, caspase-1, interleukin-1β, and Gasdermin D N-terminal domains. Proteomics analysis revealed that RVS restored the energy metabolism and oxidative phosphorylation in CME. Furthermore, reduced reactive oxygen species (ROS) level and alleviated mitochondrial damage were observed in RVS-treated mice. In vitro study, RVS inhibited the activation of NLRP3 inflammasome induced by tumor necrosis factor α plus hypoxia in H9c2 cells. Meanwhile, the pyroptosis was also suppressed by RVS, indicated by the increased cell viability, decreased LDH and propidium iodide uptake in H9c2 cells. RVS also reduced the level of mitochondrial ROS generation in vitro. Our results indicate the NLRP3 inflammasome-dependent cardiac pyroptosis plays an important role in CME-induced cardiac injury and its inhibitor exerts cardioprotective effect following CME. We also uncover the anti-pyroptosis role of RVS in CME, which is associated with regulating mitochondrial ROS.
Project description:Acute lung injury (ALI) is an acute inflammatory process in the lung parenchyma. Anemoside B4 (B4) was isolated from Pulsatilla, a plant-based drug against inflammation and commonly applied in traditional Chinese medicine. However, the anti-inflammatory effect and the mechanisms of B4 are not clear. In this study, we explored the potential mechanisms and anti-inflammatory activity of B4 both in vitro and in vivo. The results indicated that B4 suppressed the expression of iNOS, COX-2, NLRP3, caspase-1, and IL-1β. The ELISA assay results showed that B4 significantly restrained the release of inflammatory cytokines like TNF-α, IL-6, and IL-1β in macrophage cells. In addition, B4 rescued mitochondrial membrane potential (MMP) loss in (lipopolysaccharide) LPS plus ATP stimulated macrophage cells. Co-IP and molecular docking results illustrated that B4 disrupted the dimerization of TLR4. For in vivo results, B4 exhibited a protective effect on LPS and bleomycin- (BLM-) induced ALI in mice through suppressing the lesions of lung tissues, the release of inflammatory cytokines, and the levels of white blood cells, neutrophils, and lymphoid cells in the blood. Collectively, B4 has a protective effect on ALI via blocking TLR4 dimerization and NLRP3 inflammasome activation, suggesting that B4 is a potential agent for the treatment of ALI.
Project description:Human parvovirus B19 (B19V) has been strongly associated with a variety of inflammatory disorders, such as rheumatoid arthritis (RA), inflammatory bowel disease and systemic lupus erythematosus. Non‑structural protein 1 (NS1) of B19V has been demonstrated to play essential roles in the pathological processes of B19V infection due to its regulatory properties on inflammatory cytokines. Celastrol, a quinone methide isolated from Tripterygium wilfordii, has displayed substantial potential in treating inflammatory diseases, such as psoriasis and RA. However, little is known about the effects of celastrol on B19V NS1‑induced inflammation. Therefore, cell viability assay, migration assay, phagocytosis analysis, zymography assay, ELISA and immunoblotting were conducted to verify the influences of celastrol on macrophages. The present study reported the attenuating effects of celastrol on B19V NS1‑induced inflammatory responses in macrophages derived from human acute monocytic leukemia cell lines, U937 and THP‑1. Although the migration was not significantly decreased by celastrol in both U937 and THP‑1 macrophages, significantly decreased viability, migration and phagocytosis were detected in both B19V NS1‑activated U937 and THP‑1 macrophages in the presence of celastrol. Additionally, celastrol significantly decreased MMP‑9 activity and the levels of inflammatory cytokines, including IL‑6, TNF‑α and IL‑1β, in B19V NS1‑activated U937 and THP‑1 cells. Notably, significantly decreased levels of NLR family pyrin domain‑containing 3, apoptosis‑associated speck‑like, caspase‑1 and IL‑18 proteins were observed in both B19V NS1‑activated U937 and THP‑1 cells in the presence of celastrol, indicating the involvement of the inflammasome pathway. To the best of our knowledge, the present study is the first to report on the attenuating effects of celastrol on B19V NS1‑induced inflammatory responses in macrophages, suggesting a therapeutic role for celastrol in B19V NS1‑related inflammatory diseases.
Project description:IntroductionAcute lung injury (ALI) induced by lipopolysaccharide (LPS) is a significant medical condition characterized by severe pulmonary inflammation and tissue damage. NLRP3 inflammasome-driven inflammation is essential in ALI pathogenesis, inspiring novel therapeutic strategies that focus on NLRP3 and inflammation. In this study, we investigated the therapeutic potential of 5-deoxy-rutaecarpine (5-DR), a rutaecarpine derivative, in attenuating LPS-induced ALI.MethodsIn this study, we evaluated the effects of 5-DR treatment in mice exposed to LPS, lung tissues, bronchoalveolar lavage fluid, and serum were collected for analysis. LPS-stimulated J774A.1 mouse macrophages were used to further investigate the anti-inflammatory effects of 5-DR in vitro. Various techniques including histopathology, Western blotting, and luciferase reporter assay were employed.Results5-DR treatment significantly reduced lung edema, inflammatory cell infiltration in mice with LPS burden, and reduced the levels of inflammatory mediators like interleukin-1β in the mice and in LPS-stimulated J774A.1 mouse macrophages. Further western blotting analysis showed 5-DR decreased the levels of NLRP3, cleaved caspase-1, and mature IL-1β in mice and J774A.1 cells exposed to LPS. Additionally, NF-κB pathway activation significantly diminished the inhibition of the NLRP3 inflammasome by 5-DR.DiscussionOur findings highlight the therapeutic potential of 5-DR as a promising candidate for treating LPS-induced ALI, offering insights into its underlying mechanism that targets NLRP3 inflammasome-mediated inflammation.
Project description:Mechanical ventilation of lungs is capable of activating the innate immune system and inducing sterile inflammatory response. The proinflammatory cytokine IL-1? is among the definitive markers for accurately identifying ventilator-induced lung inflammation. However, mechanisms of IL-1? release during mechanical ventilation are unknown. In this study, we show that cyclic stretch activates the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasomes and induces the release of IL-1? in mouse alveolar macrophages via caspase-1- and TLR4-dependent mechanisms. We also observed that NADPH oxidase subunit gp91(phox) was dispensable for stretch-induced cytokine production, whereas mitochondrial generation of reactive oxygen species was required for stretch-induced NLRP3 inflammasome activation and IL-1? release. Further, mechanical ventilation activated the NLRP3 inflammasomes in mouse alveolar macrophages and increased the production of IL-1? in vivo. IL-1? neutralization significantly reduced mechanical ventilation-induced inflammatory lung injury. These findings suggest that the alveolar macrophage NLRP3 inflammasome may sense lung alveolar stretch to induce the release of IL-1? and hence may contribute to the mechanism of lung inflammatory injury during mechanical ventilation.
Project description:The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory immune receptor potentiating acute lung injury (ALI). However, the mechanism of TREM-1-triggered inflammation response remains poorly understood. Here, we showed that TREM-1 blocking attenuated NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome activation and glycolysis in LPS-induced ALI mice. Then, we observed that TREM-1 activation enhanced glucose consumption, induced glycolysis, and inhibited oxidative phosphorylation in macrophages. Specifically, inhibition of glycolysis with 2-deoxyglucose diminished NLRP3 inflammasome activation of macrophages triggered by TREM-1. Hypoxia-inducible factor-1α (HIF-1α) is a critical transcriptional regulator of glycolysis. We further found that TREM-1 activation facilitated HIF-1α accumulation and translocation to the nucleus via the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Inhibiting mTOR or HIF-1α also suppressed TREM-1-induced metabolic reprogramming and NLRP3/caspase-1 activation. Overall, the mTOR/HIF-1α/glycolysis pathway is a novel mechanism underlying TREM-1-governed NLRP3 inflammasome activation. Therapeutic targeting of the mTOR/HIF-1α/glycolysis pathway in TREM-1-activated macrophages could be beneficial for treating or preventing inflammatory diseases, such as ALI.
Project description:The comprehensive assessment of long-term effects of reducing intake of energy (CALERIE-II; NCT00427193) clinical trial established that caloric restriction (CR) in humans lowers inflammation. The identity and mechanism of endogenous CR-mimetics that can be deployed to control obesity-associated inflammation and diseases are not well understood. Our studies have found that 2 years of 14% sustained CR in humans inhibits the expression of the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), in adipose tissue. In mice, adipose tissue remodeling caused by weight loss through CR and low-protein diet feeding decreased, while high-fat diet-induced (HFD-induced) obesity increased SPARC expression in adipose tissue. Inducible SPARC downregulation in adult mice mimicked CR's effects on lowering adiposity by regulating energy expenditure. Deletion of SPARC in adipocytes was sufficient to protect mice against HFD-induced adiposity, chronic inflammation, and metabolic dysfunction. Mechanistically, SPARC activates the NLRP3 inflammasome at the priming step and downregulation of SPARC lowers macrophage inflammation in adipose tissue, while excess SPARC activated macrophages via JNK signaling. Collectively, reduction of adipocyte-derived SPARC confers CR-like metabolic and antiinflammatory benefits in obesity by serving as an immunometabolic checkpoint of inflammation.