Project description:Disturbance strongly impacts patterns of community diversity, yet the shape of the diversity-disturbance relationship remains a matter of debate. The topic has been of interest in theoretical ecology for decades as it has practical implications for the understanding of ecosystem services in nature. One of these processes is the remineralization of organic matter by microorganisms in coastal marine sediments, which are periodically impacted by disturbances across the sediment-water interface. Here we set up an experiment to test the hypothesis that disturbance impacts microbial diversity and function during the anaerobic degradation of organic matter in coastal sediments. We show that during the first 3 weeks of the experiment, disturbance increased both microbial production, derived from the increase in microbial abundance, and diversity of the active fraction of the community. Both community diversity and phylogenetic diversity increased, which suggests that disturbance promoted the cohabitation of ecologically different microorganisms. Metagenome analysis also showed that disturbance increased the relative abundance of genes diagnostic of metabolism associated with the sequential anaerobic degradation of organic matter. However, community composition was not impacted in a systematic way and changed over time. In nature, we can hypothesize that moderate storm disturbances, which impact coastal sediments, promote diverse, and productive communities. These events, rather than altering the decomposition of organic matter, may increase the substrate turnover and, ultimately, remineralization rates.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. nirS gene diversity from two salt marsh experiments, GSM (4 treatments, 8 samples, duplicate arrays, four replicate blocks per array, 8 arrays per slide) and PIE (2 treatments, 16 samples, duplicate arrays four replicate blocks per array, 8 arrays per slide)
Project description:The microbial communities associated with marine sediments are critical for ecosystem function yet remain poorly characterized. While culture-independent (CI) techniques capture the broadest perspective on community composition, culture-dependent (CD) methods can select for low abundance taxa that are missed using CI approaches. This study aimed to assess microbial diversity in tropical marine sediments at five shallow-water sites in Belize using both CD and CI techniques. The CD methods captured approximately 3% of the >800 genera detected across all sites using the CI approach. Additionally, 39 genera were only detected in culture, revealing rare taxa that were missed with the CI approach. Significantly different communities were detected across sites, with rare taxa playing an important role in distinguishing among communities. This study provides important baseline data describing shallow-water sediment microbial communities, evidence that standard cultivation techniques may be more effective than previously recognized, and the first steps towards identifying new taxa that are amenable to agar plate cultivation.
Project description:Methanol is an ubiquitous compound that plays a role in microbial processes as a carbon and energy source, intermediate in metabolic processes or as end product in fermentation. In anoxic environments, methanol can act as the sole carbon and energy source for several guilds of microorganisms: sulfate-reducing microorganisms, nitrate-reducing microorganisms, acetogens and methanogens. In marine sediments, these guilds compete for methanol as their common substrate, employing different biochemical pathways. In this review, we will give an overview of current knowledge of the various ways in which methanol reaches marine sediments, the ecology of microorganisms capable of utilizing methanol and their metabolism. Furthermore, through a metagenomic analysis, we shed light on the unknown diversity of methanol utilizers in marine sediments which is yet to be explored.
Project description:ObjectivesThe marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.Spatio-temporal patterns of the microbial communitiesOur results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.Macrofauna, microbes and the benthic n-cycleDistance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment.
Project description:Methanogenesis in cold marine sediments is a globally important process leading to methane hydrate deposits, cold seeps, physical instability of sediment, and atmospheric methane emissions. We employed a multidisciplinary approach that combined culture-dependent and -independent analyses with geochemical measurements in the sediments of Skan Bay, Alaska (53 degrees N, 167 degrees W), to investigate methanogenesis there. Cultivation-independent analyses of the archaeal community revealed that uncultivated microbes of the kingdoms Euryarchaeota and Crenarchaeota are present at Skan Bay and that methanogens constituted a small proportion of the archaeal community. Methanogens were cultivated from depths of 0 to 60 cm in the sediments, and several strains related to the orders Methanomicrobiales and Methanosarcinales were isolated. Isolates were psychrotolerant marine-adapted strains and included an aceticlastic methanogen, strain AK-6, as well as three strains of CO(2)-reducing methanogens: AK-3, AK7, and AK-8. The phylogenetic positions and physiological characteristics of these strains are described. We propose a new species, Methanogenium boonei, with strain AK-7 as the type strain.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.
Project description:A 16S ribosomal DNA (rDNA) clone library from permanently cold marine sediments was established. Screening 353 clones by dot blot hybridization with group-specific oligonucleotide probes suggested a predominance of sequences related to bacteria of the sulfur cycle (43.4% potential sulfate reducers). Within this fraction, the major cluster (19.0%) was affiliated with Desulfotalea sp. and other closely related psychrophilic sulfate reducers isolated from the same habitat. The cloned sequences showed between 93 and 100% similarity to these bacteria. Two additional groups were frequently encountered: 13% of the clones were related to Desulfuromonas palmitatis, and a second group was affiliated with Myxobacteria spp. and Bdellovibrio spp. Many clones (18.1%) belonged to the gamma subclass of the class Proteobacteria and were closest to symbiotic or free-living sulfur oxidizers. Probe target groups were further characterized by amplified rDNA restriction analysis to determine diversity within the groups and within the clone library. Rarefaction analysis suggested that the total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones.
Project description:The diversity of microorganisms present in a sediment colonized by the phanerogam Zostera noltii has been analyzed. Microbial DNA was extracted and used for constructing two 16S rDNA clone libraries for Bacteria and Archaea. Bacterial diversity was very high in these samples, since 57 different sequences were found among the 60 clones analyzed. Eight major lineages of the Domain Bacteria were represented in the library. The most frequently retrieved bacterial group (36% of the clones) was delta-Proteobacteria related to sulfate-reducing bacteria. The second most abundant group (27%) was gamma-Proteobacteria, including five clones closely related to S-oxidizing endosymbionts. The archaeal clone library included members of Crenarchaeota and Euryarchaeota, with nine different sequences among the 15 analyzed clones, indicating less diversity when compared to the Bacteria organisms. None of these sequences was closely related to cultured Archaea organisms.