Project description:Reported herein is a scalable chemical synthesis of disaccharide building blocks for heparan sulfate (HS) oligosaccharide assembly. The use of d-glucuronate-based acceptors for dehydrative glycosylation with d-glucosamine partners is explored, enabling diastereoselective synthesis of appropriately protected HS disaccharide building blocks (d-GlcN-α-1,4-d-GlcA) on a multigram scale. Isolation and characterization of key donor (1,2 glycal)- and acceptor (ortho-ester, anhydro)-derived side products ensure methodology improvements to reduce their formation; protecting the d-glucuronate acceptor at the anomeric position with a para-methoxyphenyl unit proves optimal. We also introduce glycal uronate acceptors, showing them to be comparative in reactivity to their pyranuronate counterparts. Taken together, this gram-scale access offers the capability to explore the iterative assembly of defined HS sequences containing the d-GlcN-α-1,4-d-GlcA repeat, highlighted by completing this for two tetrasaccharide syntheses.
Project description:Several 6-C-substituted 2-acetamido-2-deoxy-beta-D-glucopyranosides (beta-D-GlcNAc monosaccharides 1a-3a and 1,4-linked disaccharides 1b-3b) were studied by solution NMR spectroscopy. Conformational analysis of the (6S)- and (6R)-C-methyl-substituted beta-d-GlcNAc monosaccharides indicates that the stereodefined methyl groups impose predictable conformational biases on the exocyclic C-5-C-6 bond, as determined by (1)H-(1)H and (13)C-(1)H coupling constants. Variable-temperature NMR experiments in methanol-d(4) were performed to determine DeltaDeltaH and DeltaDeltaS values derived from the two lowest energy conformers. These indicate that while the influence of 6-C-methyl substitution on conformational enthalpy is in accord with the classic principles of steric interactions, conformational preference in solution can also be strongly affected by other factors such as solvent-solute interactions and solvent reorganization.
Project description:β-Hydroxy-α-amino acids figure prominently as chiral building blocks in chemical synthesis and serve as precursors to numerous important medicines. Reported herein is a method for the synthesis of β-hydroxy-α-amino acid derivatives by aldolization of pseudoephenamine glycinamide, which can be prepared from pseudoephenamine in a one-flask protocol. Enolization of (R,R)- or (S,S)-pseudoephenamine glycinamide with lithium hexamethyldisilazide in the presence of LiCl followed by addition of an aldehyde or ketone substrate affords aldol addition products that are stereochemically homologous with L- or D-threonine, respectively. These products, which are typically solids, can be obtained in stereoisomerically pure form in yields of 55-98 %, and are readily transformed into β-hydroxy-α-amino acids by mild hydrolysis or into 2-amino-1,3-diols by reduction with sodium borohydride. This new chemistry greatly facilitates the construction of novel antibiotics of several different classes.
Project description:The conformational behaviour of three phosphate-bridged dimannosides was studied by means of NMR and computational molecular modelling. First, the conformations of the phosphodiester linker were determined by quantum chemistry methods using dimethyl phosphate as a model. Then, a series of conformations was constructed for each of the studied molecules. Preliminary molecular dynamics (MD) simulations revealed that the inclusion of a cation had a drastic influence on the obtained results. Additionally, triethylammonium had the same effect as sodium as the counter-ion. After that, another series of MD simulations was run. The resulting MD trajectories were used to define the conformations responsible for the observed nuclear Overhauser effects and inter-nuclear coupling.
Project description:A number of biologically relevant glycoconjugates possess 1,2- cis-furanosidic linkages, a class of glycosidic bond that remains challenging to introduce with high stereoselectivity. In this paper, we report an approach to one family of such linkages, α-xylofuranosides, via the use of thioglycoside donors possessing a conformationally restricting xylylene protecting group. The method was shown to provide the desired targets in good to excellent yield and stereoselectivity. Computational investigations support the proposal that the protecting group locks the electrophilic intermediate in these reactions into a conformation that leads to the high selectivity. The power of the methodology was demonstrated through the synthesis of a complex hexasaccharide motif from lipoarabinomannan, an immunomodulatory polysaccharide from mycobacteria.
Project description:Substituted piperidines are emerging as important medicinally-active structural motifs. Here, we report highly stereoselective carbolithiation reactions of α-aryl piperidine enecarbamates that offer direct access to vicinally-substituted piperidine compounds. We have also demonstrated that the carbanion intermediates can be trapped with a carbon electrophile.
Project description:The synthesis of both enantiomers of a 4-O-6-S-alpha-cyanobenzylidene-protected 6-thiorhamnopyranosyl thioglycoside is described starting from D-mannnose and L-arabinose derivatives for the D- and L-series, respectively. This donor is effective in the preparation of the corresponding beta-glycosides using the 1-benzenesulfinyl piperidine/trifluoromethanesulfonic anhydride protocol. Following desulfurization and concomitant debenzylation with Raney nickel, the so-formed 6-thio-beta-mannosides are converted in high yield to the beta-rhamnopyranosides.
Project description:The disaccharides IdoA(2SO3)-anManOH(6SO3) and IdoA-anManOH (where IdoA represents alpha-L-iduronate, anManOH represents 2,5-anhydro-D-mannitol and SO3 represents sulphate ester) were prepared from bovine lung heparin using HNO2 depolymerization, borohydride reduction and desulphation, and were examined by 400 MHz 1H-n.m.r. spectroscopy. Three-bond proton-proton coupling constants around the IdoA ring were determined under a range of experimental conditions. For unsulphated IdoA all four proton-proton coupling constants varied markedly as a function of temperature, pH and solvent, providing clear evidence for a rapid conformational equilibrium. These data were analysed in terms of the three most energetically stable IdoA conformers: 1C4, 4C1, and 2S0. Predicted coupling constants for these conformers were determined using a modified Karplus-type relationship. For unsulphated IdoA in dimethyl sulphoxide the equilibrium was provoked strongly in favour of a slightly distorted 4C1 'chair' IdoA conformer for which coupling constants have not previously been reported. For sulphated IdoA in aqueous conditions and at low pH the equilibrium is strongly in favour of the alternative 1C4 chair conformer. Under many conditions, however, significant contributions from all three conformers occur for the non-reducing terminal IdoA in these disaccharides.
Project description:A 6-deoxy-α-L-talopyranoside acceptor was readily prepared from methyl α-L-rhamnopyranoside and glycosylated with thiogalactoside donors using NIS/TfOH as the promoter to give good yields of the desired a-linked disaccharide (69-90%). Glycosylation with a 2-azido-2-deoxy-D-glucosyl trichloroacetimidate donor was not completely stereoselective (α:β = 6:1), but the desired a-linked disaccharide could be isolated in good overall yield (60%) following conversion into its corresponding tribenzoate derivative. The disaccharides were designed to mimic the heparan sulfate (HS) disaccharide GlcN(2S,6S)-IdoA(2S). However, the intermediates readily derived from these disaccharides were not stable to the sulfonation/deacylation conditions required for their conversion into the target HS mimetics.
Project description:The design, synthesis, and conformational analysis of an oligobenzanilide helix mimetic scaffold capable of simultaneous mimicry of two faces of an α-helix is reported. The synthetic methodology provides access to diverse monomer building blocks amenable to solid-phase assembly in just four synthetic steps. The conformational flexibility of model dimers was investigated using a combination of solid and solution state methodologies supplemented with DFT calculations. The lack of noncovalent constraints allows for significant conformational plasticity in the scaffold, thus permitting it to successfully mimic residues i, i+2, i+4, i+6, i+7, and i+9 of a canonical α-helix.