Project description:The portable and inexpensive hand rehabilitation robot has become a practical rehabilitation device for patients with hand dysfunction. A pneumatic rehabilitation glove with an active trigger control system is proposed, which is based on surface electromyography (sEMG) signals. It can trigger the hand movement based on the patient's hand movement trend, which may improve the enthusiasm and efficiency of patient training. Firstly, analysis of sEMG sensor installation position on human's arm and signal acquisition process were carried out. Then, according to the statistical law, three optimal eigenvalues of sEMG signals were selected as the follow-up neural network classification input. Using the back propagation (BP) neural network, the classifier of hand movement is established. Moreover, the mapping relationship between hand sEMG signals and hand actions is built by training and testing. Different patients choose the same optimal eigenvalues, and the calculation formula of eigenvalues' amplitude is unique. Due to the differences among individuals, the weights and thresholds of each node in the BP neural network model corresponding to different patients are not the same. Therefore, the BP neural network model library is established, and the corresponding network is called for operation when different patients are trained. Finally, based on sEMG signal trigger, the pneumatic glove training control algorithm was proposed. The combination of the trigger signal waveform and the motion signal waveform indicates that the pneumatic rehabilitation glove is triggered to drive the patient's hand movement. Preliminary tests have confirmed that the accuracy rate of trend recognition for hand movement is about 90%. In the future, clinical trials of patients will be conducted to prove the effectiveness of this system.
Project description:An active surface with an on-demand tunable topography holds great potential for various applications, such as reconfigurable metasurfaces, adaptive microlenses, soft robots and four-dimensional (4D) printing. Despite extensive progress, to achieve refined control of microscale surface structures with large-amplitude deformation remains a challenge. Moreover, driven by the demand of constructing a large area of microstructures with increased complexity-for instance, biomimetic functional textures bearing a three-dimensional (3D) gradient-novel strategies are highly desired. Here, we develop an active surface with a dynamic topography and three-tier height gradient via a strain-tunable mismatching-bonding process. Pneumatic actuation allows for rapid, reversible and uniform regulation of surface microstructures at the centimeter scale. The in-situ modulation facilitates large-amplitude deformation with a maximum tuning range of 185 μm. Moreover, the structural gradient can be modulated by programming the strain value of the bonding process. With our strategy, another two types of surfaces with a four-tier gradient and without gradient were also prepared. By providing active modulation and design flexibility of complicated microstructures, the proposed strategy would unlock more opportunities for a wealth of novel utilizations.
Project description:Vibration is a common strategy for aquatic organisms to achieve their life activities, especially at the air-water interface. For the locomotion of small creatures, the organs with plate features are often used on water surfaces, which inspires relevant studies about using thin plates for robot propulsions. However, the influence of the general deformations of thin plates on the generated flow fields has not been considered. Here, a comprehensive investigation is conducted about the flow fields that arose by vibrations of thin plates and the potential as locomotion strategies are explored. It is discovered that as thin plates are subjected to vibration excitations on the water surface, the produced flow fields are mainly determined by the vibration shapes, and the influence rules of plate deformations on the flow fields are identified. The main factors producing asymmetric flow fields are analyzed to realize the morphology control of the flow fields. Then, to determine effective locomotion strategies on the water surface, the flow fields stimulated by integrated vibration exciters are explored, and 2 water surface robots are developed consequentially, which exhibit superior motion performance. This work reveals the basic rules of the vibration-induced-flow mechanism by thin plates and establishes new locomotion strategies for aquatic robots.
Project description:The flow-induced vibration response of a square cross-sectional cylinder with low mass and damping ratio is analysed using continuous wavelet transforms (CWT) for three representative angles of attack of the cylinder to the incoming flow. The amplitude and frequency responses over a range of flow velocities map out multiple regimes (branches) of oscillation. Analysis of the time-frequency domain for boundary regions between branches using CWT reveals intermittency at the synchronization region boundaries as well as mode competition at branch boundaries. Complementary recurrence analysis shows that periodic dynamical states are interrupted by chaotic bursts in the transition regions around the higher branch at an angle of attack of α = 20° (a new branch first observed by Nemes et al. (2012 J. Fluid Mech.710, 102-130 (doi:10.1017/jfm.2012.353))), supporting the CWT-based frequency-time analysis.This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.
Project description:Alternative computing approaches that interface readily with physical systems are well suited for embedded control of those systems. We demonstrate finite state machines implemented as pneumatic circuits of microfluidic valves and use these controllers to direct microfluidic liquid handling procedures on the same chip. These monolithic integrated systems require only power to be supplied externally, in the form of a vacuum source. User input can be provided directly to the chip by covering pneumatic ports with a finger. State machines with up to four bits of state memory are demonstrated, and next-state combinational logic can be fully reprogrammed by changing the hole-punch pattern on a membrane in the chip. These pneumatic computers demonstrate a framework for the embedded control of physical systems and open a path to stand-alone lab-on-a-chip devices capable of highly complex functionality.
Project description:The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully-coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed.
Project description:An observer traversing an environment actively relocates gaze to fixate objects. Evidence suggests that gaze is frequently directed toward the center of an object considered as target but more likely toward the edges of an object that appears as an obstacle. We suggest that this difference in gaze might be motivated by specific patterns of optic flow that are generated by either fixating the center or edge of an object. To support our suggestion we derive an analytical model that shows: Tangentially fixating the outer surface of an obstacle leads to strong flow discontinuities that can be used for flow-based segmentation. Fixation of the target center while gaze and heading are locked without head-, body-, or eye-rotations gives rise to a symmetric expansion flow with its center at the point being approached, which facilitates steering toward a target. We conclude that gaze control incorporates ecological constraints to improve the robustness of steering and collision avoidance by actively generating flows appropriate to solve the task.
Project description:Coupling between flows and material properties imbues rheological matter with its wide-ranging applicability, hence the excitement for harnessing the rheology of active fluids for which internal structure and continuous energy injection lead to spontaneous flows and complex, out-of-equilibrium dynamics. We propose and demonstrate a convenient, highly tunable method for controlling flow, topology, and composition within active films. Our approach establishes rheological coupling via the indirect presence of fully submersed micropatterned structures within a thin, underlying oil layer. Simulations reveal that micropatterned structures produce effective virtual boundaries within the superjacent active nematic film due to differences in viscous dissipation as a function of depth. This accessible method of applying position-dependent, effective dissipation to the active films presents a nonintrusive pathway for engineering active microfluidic systems.
Project description:In order to improve the vibration suppression effect of the flexible beam system, active control based on soft piezoelectric macro-fiber composites (MFCs) consisting of polyimide (PI) sheet and lead zirconate titanate (PZT) is used to reduce the vibration. The vibration control system is composed of a flexible beam, a sensing piezoelectric MFC plate, and an actuated piezoelectric MFC plate. The dynamic coupling model of the flexible beam system is established according to the theory of structural mechanics and the piezoelectric stress equation. A linear quadratic optimal controller (LQR) is designed based on the optimal control theory. An optimization method, designed based on a differential evolution algorithm, is utilized for the selection of weighted matrix Q. Additionally, according to theoretical research, an experimental platform is built, and vibration active control experiments are carried out on piezoelectric flexible beams under conditions of instantaneous disturbance and continuous disturbance. The results show that the vibration of flexible beams is effectively suppressed under different disturbances. The amplitudes of the piezoelectric flexible beams are reduced by 94.4% and 65.4% under the conditions of instantaneous and continuous disturbances with LQR control.
Project description:There is a broad scope of literature investigating whole-body vibration (WBV) effects on blood flow (BF). However, it is unclear how therapeutic localized vibrations alter BF. Low-frequency massage guns are advertised to enhance muscle recovery, which may be through BF changes; however, studies using these devices are lacking. Thus, the purpose of this study was to determine if popliteal artery BF increases from localized vibration to the calf. Twenty-six healthy, recreationally active university students (fourteen males, twelve females, mean age 22.3 years) participated. Each subject received eight therapeutic conditions randomized on different days with ultrasound blood flow measurements. The eight conditions combined either control, 30 Hz, 38 Hz, or 47 Hz for a duration of 5 or 10 min. BF measurements of mean blood velocity, arterial diameter, volume flow, and heart rate were measured. Using a cell means mixed model, we found that both control conditions resulted in decreased BF and that both 38 Hz and 47 Hz resulted in significant increases in volume flow and mean blood velocity, which remained elevated longer than the BF induced by 30 Hz. This study demonstrates localized vibrations at 38 Hz and 47 Hz significantly increase BF without affecting the heart rate and may support muscle recovery.