Project description:We present a terahertz spherical aberration-corrected metalens that uses the dynamic phase to achieve polarization multiplexed imaging. The designed metalens has polarization-dependent imaging efficiencies and polarization extinction ratios that exceed 50% and 10:1, respectively. Furthermore, opposite gradient phases can be applied to orthogonal polarizations to shift the imaging of the two polarized sources in the longitudinal and transverse directions. Indeed, we find that the metalens has a smaller depth-of-focus than a traditional metalens when imaging point sources with limited objective lengths. These results provide a new approach for achieving multifunctional beam steering, tomographic imaging and chiroptical detection.
Project description:Wide-angle metalenses in the longwave infrared have shown great advantages over the traditional refractive doublets or triplets, due to light weight, CMOS compatibility, and low cost. However, previous endeavors have been plagued by challenges including a narrow waveband, large F-number, distortion, and spherical aberration. To address these problems, this study introduces two dispersive metasurfaces, placed near the front focal plane and upon the rear plane of a plano-convex lens, to correct optical aberrations. Utilizing this methodology, we propose and experimentally demonstrate an aberration-corrected hybrid metalens for thermal imaging in the 8-12 μm waveband, featuring an FOV of 24°, F-number of 1.2, and diameter of 12.2 mm. The developed hybrid metalens rigorously evaluated, exhibits Modulation Transfer Function (MTF) values exceeding 0.2 at 20 Lp/mm across the full FOV, and features an average transmission of 48.7 %, a relative focusing efficiencies of up to 42.1 %, polarization insensitivity and broadband imaging capacity. These results emphasize the potential applications of our system in diverse fields, such as camera lenses, autonomous driving, healthcare, and environmental monitoring.
Project description:Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers. Through the application of effective-medium theory, we determined the refractive index of micro-tungsten particles in silicone elastomer, closely aligning with experimental findings. The soft metalens allows for transmission across broadband frequencies (50 kHz to 0.4 MHz) through 3D-printed human skull models mimicking aberration layers. In ex vivo transcranial ultrasound tests, we observed a 9.3 dB intensity enhancement at the focal point compared to results obtained using an unfocused transducer. By integrating soft materials, metamaterials, and gradient refractive index, the soft metalens presents future opportunities for advancing next-generation soft devices in deep-brain stimulation, non-destructive evaluation, and high-resolution ultrasound imaging.
Project description:Metalenses are instruments that manipulate waves and have exhibited remarkable capabilities to date. However, an important hurdle arises due to the severe hampering of the angular response originating from coma and field curvature aberrations, which result in a loss of focusing ability. Herein, we provide a blueprint by introducing the notion of a wide field-of-hearing (FOH) metalens, designed particularly for capturing and focusing sound with decreased aberrations. Employing an aberration-free planar-thin metalens that leverages perfect acoustic symmetry conversion, we experimentally realize a robust wide FOH capability of approximately 140∘ in angular range. Moreover, our metalens features a relatively short focal length, enabling compact implementation by reducing the aperture-to-hearing plane distance. This is beneficial for space-efficient source-tracking sound sensing. Our strategy can be used across various platforms, potentially including energy harvesting, monitoring, imaging, and communication in auditory, ultrasonic, and submerged environments.
Project description:Microscopes play an important role in the diagnosis of microorganisms and pathological lesions in ophthalmology guiding us to the appropriate management. The current trend of collecting samples and examination is mostly laboratory-based which consume time, labor, and are costly. Smartphones are being used in different fields of ophthalmology with great ubiquity. The good quality photographs obtained by smartphones along with the ease of mobility has made it possible to warrant its use in the microscopic world. This article describes a simple novel technique of preparing an intraocular lens system which can be used in conjunction with a smartphone to detect microorganisms and pathological lesions.
Project description:The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition brings depth resolution at the nanometer scale. Aberration correction therefore opens up the possibility of 3D imaging by optical sectioning. Here we develop a definition for the depth resolution for scanning transmission electron microscope depth sectioning and present initial results from this method. Objects such as catalytic metal clusters and single atoms on various support materials are imaged in three dimensions with a resolution of several nanometers. Effective focal depth is determined by statistical analysis and the contributing factors are discussed. Finally, current challenges and future capabilities available through new instruments are discussed.
Project description:Metalenses have potential to replace various bulky conventional optical elements with ultrathin nanostructure arrays. In particular, active metalenses with reconfigurable focusing capability have attracted considerable interest from the academic and industrial communities. However, their tuning range is currently restricted by limited material properties and fabrication difficulties. Here, a hybrid optical system capable of three-dimensional relocation of a focal spot is proposed and experimentally demonstrated. The system comprises a mechanically actuated passive metalens doublet that can be easily fabricated with commonly available materials and processes. An incident laser can be focused to a desired point in three-dimensional space simply by rotating two metalenses or changing their separation. In addition, exploiting the polarization-multiplexing capability of metasurfaces, a hologram is incorporated to the metalenses to guide rotational and positional alignment of two metasurfaces. The ease of fabrication and alignment provided by this approach could widen its application to many practical fields.
Project description:A plethora of metalenses and diffractive lenses ("flat lenses") have been demonstrated over the years. Recently, attempts have been made to stretch their performance envelope, particularly in the direction of wide-band achromatic performance. While achromatic behavior has been demonstrated, showing an actual improvement in imaging performance relative to conventional (non-chromatically corrected) flat lenses has remained a major challenge. The reasons for this are use of inappropriate performance metrics, lack of comparison to a baseline conventional design, and lack of a performance metric that combines signal-to-noise ratio and resolution. An additional problem is that different published flat lens designs use different first order parameters, so they cannot be compared. In this work we present an overall performance metric that will allow comparison of different types of flat lenses, even if their first order optical parameters are not the same. We apply this metric to several published achromatic flat lens designs and compare them to the equivalent conventional flat lens, which we consider as the lower bound for achromatic flat lens performance. We found that the performance of the achromatic flat lenses studied does not surpass that of a conventional diffractive lens. Use of this metric paves the way for future developments in the field of achromatic flat lenses, which will display proven progress.
Project description:Flat optics have attracted interest for decades due to their flexibility in manipulating optical wave properties, which allows the miniaturization of bulky optical assemblies into integrated planar components. Recent advances in achromatic flat lenses have shown promising applications in various fields. However, it is a significant challenge for achromatic flat lenses with a high numerical aperture to simultaneously achieve broad bandwidth and expand the aperture sizes. Here, we present the zone division multiplex of the meta-atoms on a stepwise phase dispersion compensation (SPDC) layer to address the above challenge. In principle, the aperture size can be freely enlarged by increasing the optical thickness difference between the central and marginal zones of the SPDC layer, without the limit of the achromatic bandwidth. The SPDC layer also serves as the substrate, making the device thinner. Two achromatic flat lenses of 500 nm thickness with a bandwidth of 650-1000 nm are experimentally achieved: one with a numerical aperture of 0.9 and a radius of 20.1 µm, and another with a numerical aperture of 0.7 and a radius of 30.0 µm. To the best of our knowledge, they are the broadband achromatic flat lenses with highest numerical apertures, the largest aperture sizes and thinnest thickness reported so far. Microscopic imaging with a 1.10 µm resolution has also been demonstrated by white light illumination, surpassing any previously reported resolution attained by achromatic metalenses and multi-level diffractive lenses. These unprecedented performances mark a substantial step toward practical applications of flat lenses.
Project description:A flat telescope (FTS), which incorporates an all-dielectric metasurface doublet (MD) based on hydrogenated amorphous silicon nanoposts, is proposed and demonstrated to achieve flexibly magnified angular beam steering that is sensitive to both light polarization and deflection direction. Specifically, for transverse-electric-polarized incident beams, the MD exhibits deflection magnification factors of +5 and +2, while for transverse magnetic polarization, the beam is steered in reverse to yield magnification factors of -5 and -2 in the horizontal and vertical directions, respectively. The proposed MD comprises cascaded metalenses, which can invoke polarization-selective transmission phases. The MD which emulates a set of convex and concave lenses renders positively increased beam deflection, whereas the case corresponding to a pair of convex lenses facilitates negatively amplified beam deflection. The essential phase profiles required for embodying the MD are efficiently extracted from its geometric lens counterpart. Furthermore, the implemented FTS, operating in the vicinity of a 1550 nm wavelength, can successfully enable enhanced beam steering by facilitating polarization-sensitive bidirectional deflection amplifications. The proposed FTS can be applied in the development of a miniaturized light detection and ranging system, where the beam scanning range can be effectively expanded in two dimensions.