Project description:We investigated the association between endogenous vitamin D and the severity of COVID-19 as well as the mechanisms of action of vitamin D supplementation. Vitamin D deficiency and insufficiency were associated with increased severity and unfavourable outcome after 28 days. Vitamin D levels were negatively associated with biomarkers of COVID-19 severity. Vitamin D supplementation after challenge of mice with COVID-19 plasma led to reduced levels of TNFα, IL-6, IFNγ and MPO in the lung, as well as down-regulation of pro-inflammatory pathways as derived from RNA-seq experiments. Thus, vitamin D demonstrates a protective effect against severity and unfavorable outcome in COVID-19, possibly through attenuation of tissue-specific hyperinflammation.
Project description:IntroductionExpression and certain SNPs of interferon lambda 3 and 4 (IFNL3 and 4) have been associated with variable outcomes in COVID-19 patients in different regions, suggesting population-specific differences in the disease outcome. This study examined the association of INFL3 and INFL4 SNPs (rs12979860 and rs368234815, respectively) and nasopharyngeal expression with COVID-19 disease severity in Pakistani patients.MethodsFor this study, 117 retrospectively collected nasopharyngeal swab samples were used from individuals with mild and severe COVID-19 disease. qPCR assays were used to determine the viral loads and mRNA expression of IFNL3 and 4 through the Ct and delta Ct methods, respectively. Due to funding limitations, only one SNP each in INFL3 and INFL4 (found to be most significant through literature search) was analyzed using tetra-arm PCR and RFLP-PCR strategies, respectively. The Mann-Whitney U-test was applied to evaluate the statistical differences in the expression of IFNL3/4 genes in the mild and severe groups, while for SNPs, a Chi-square test was employed. A multivariate Cox regression test was performed to assess the relationship of different variables with COVID-19 severity.ResultsComparative analysis of SNPs between mild and severe groups showed only the difference in SNP of the IFNL4 gene to be statistically significant (p = 0.001). Similarly, nasopharyngeal expression of IFNL3 and IFNL4 genes, respectively, was found to be 3.48-fold less and 3.48-fold higher in the severe group as compared to the mild group. Multivariate analysis revealed SNP in the IFNL4 gene and age to have a significant association with COVID-19 severity.ConclusionDespite the small sample size, IFNL4 gene SNP and patient age were associated with COVID-19 severity. Age, IFNL3/IFNL4 mRNA expression in the nasopharyngeal milieu, and the presence of SNP in the IFNL4 (rs368234815) gene in COVID-19 patients may be biomarkers for infection severity and help improve SARS-CoV-2 infection management.
Project description:Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19), exhibit a wide spectrum of disease behavior. Since DNA methylation has been implicated in the regulation of viral infections and the immune system, we performed an epigenome- wide association study (EWAS) to identify candidate loci regulated by this epigenetic mark that could be involved in the onset of COVID-19 in patients without comorbidities.
Project description:BackgroundThe efficacy of a single dose of pegylated interferon lambda in preventing clinical events among outpatients with acute symptomatic coronavirus disease 2019 (Covid-19) is unclear.MethodsWe conducted a randomized, controlled, adaptive platform trial involving predominantly vaccinated adults with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brazil and Canada. Outpatients who presented with an acute clinical condition consistent with Covid-19 within 7 days after the onset of symptoms received either pegylated interferon lambda (single subcutaneous injection, 180 μg) or placebo (single injection or oral). The primary composite outcome was hospitalization (or transfer to a tertiary hospital) or an emergency department visit (observation for >6 hours) due to Covid-19 within 28 days after randomization.ResultsA total of 933 patients were assigned to receive pegylated interferon lambda (2 were subsequently excluded owing to protocol deviations) and 1018 were assigned to receive placebo. Overall, 83% of the patients had been vaccinated, and during the trial, multiple SARS-CoV-2 variants had emerged. A total of 25 of 931 patients (2.7%) in the interferon group had a primary-outcome event, as compared with 57 of 1018 (5.6%) in the placebo group, a difference of 51% (relative risk, 0.49; 95% Bayesian credible interval, 0.30 to 0.76; posterior probability of superiority to placebo, >99.9%). Results were generally consistent in analyses of secondary outcomes, including time to hospitalization for Covid-19 (hazard ratio, 0.57; 95% Bayesian credible interval, 0.33 to 0.95) and Covid-19-related hospitalization or death (hazard ratio, 0.59; 95% Bayesian credible interval, 0.35 to 0.97). The effects were consistent across dominant variants and independent of vaccination status. Among patients with a high viral load at baseline, those who received pegylated interferon lambda had lower viral loads by day 7 than those who received placebo. The incidence of adverse events was similar in the two groups.ConclusionsAmong predominantly vaccinated outpatients with Covid-19, the incidence of hospitalization or an emergency department visit (observation for >6 hours) was significantly lower among those who received a single dose of pegylated interferon lambda than among those who received placebo. (Funded by FastGrants and others; TOGETHER ClinicalTrials.gov number, NCT04727424.).
Project description:BackgroundDengue patients develop different disease severity ranging from mild (dengue fever [DF]) to severe forms (dengue hemorrhagic fever [DHF] and the fatal dengue shock syndrome [DSS]). Host genetics are considered to be one factor responsible for the severity of dengue outcomes. To identify genes associated with dengue severity that have not been studied yet, we performed genetic association analyses of interferon lambda 3 (IFNL3), CD27, and human leukocyte antigen-DPB1 (HLA-DPB1) genes in Thai dengue patients.MethodsA case-control association study was performed in 877 children (age ≤ 15 years) with dengue infection (DF, n = 386; DHF, n = 416; DSS, n = 75). A candidate single nucleotide polymorphism of each of IFNL3, CD27, and HLA-DPB1 was selected to be analyzed. Genotyping was performed by TaqMan real-time PCR assay, and the association with dengue severity was examined.ResultsThe rs9277534 variant of HLA-DPB1 was weakly associated with DHF. The genotype GG and G allele conferred protection against DHF (p = 0.04, odds ratio 0.74 for GG genotype, p = 0.03, odds ratio 0.79 for G allele). The association became borderline significant after adjusting for confounders (p = 0.05, odds ratio 0.82). No association was detected for IFNL3 or CD27.ConclusionsThe present study demonstrated the weak association of the rs9277534 variant of HLA-DPB1 with protection against DHF. This variant is in the 3' untranslated region and affects HLA-DPB1 surface protein expression. Our finding suggests that HLA-DPB1 may be involved in DHF pathogenesis.
Project description:In this study, we sought to identify circulating microRNA (miRNA) signatures associated with COVID-19 severity and outcome through small RNA-sequencing of serum samples from 89 COVID-19 patients and 45 healthy controls. As results, a set of miRNAs associated with lung disease, vascular damage and inflammation were upregulated in serum of COVID-19 patients vs controls, while miRNAs that inhibit pro-inflammatory cytokines and chemokines, angiogenesis and stress response were downregulated. In addition, patients with severe COVID-19 vs mild or moderate disease had a circulating miRNA signature associated with sepsis, hearth failure, tissue fibrosis, inflammation, and impairment of type I IFN and antiviral responses. A subset of the differentially expressed miRNAs predicted ICU admission, sequelae and mortality in COVID-19 patients. Investigation of the differentially expressed circulating miRNAs in relevant human cell types in vitro showed that some of these miRNAs were modulated directly by SARS-CoV-2 infection or indirectly by type I IFN stimulation.
Project description:The 3p21.31 locus, which locus contains a chemokine receptor (CKR) cluster, is the most robust genomic region associated with COVID-19 severity. We tested expression quantitative trait loci (eQTL) targeting the 3p21.31 CKR cluster linked to COVID-19 hospitalization in Europeans from the COVID-19 HGI meta-analysis. Among these, CCRL2, a key regulator of neutrophil trafficking, was targeted by neutrophil-restricted eQTLs. We confirmed these eQTLs in an Italian COVID-19 cohort. Haplotype analysis revealed a link between an increased CCRL2 expression and COVID-19 severity and hospitalization. By the exposure of neutrophils to a TLR8 ligand, reflecting a viral infection, we revealed specific chromatin domains within the 3p21.31 locus exclusive to neutrophils. In addition, the identified variants mapped within these regions altered the binding motif of neutrophils expressed transcription factors. These results support that CCRL2 eQTL variants contribute to the risk of severe COVID-19 by selectively affecting neutrophil’s function
Project description:With the first reports on coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the scientific community working in the field of type III IFNs (IFN-λ) realized that this class of IFNs could play an important role in this and other emerging viral infections. In this Viewpoint, we present our opinion on the benefits and potential limitations of using IFN-λ to prevent, limit, and treat these dangerous viral infections.
Project description:Immunoglobulins (IGs), crucial components of the adaptive immune system, are encoded by three genomic loci. However, the complexity of the IG loci severely limits the effective use of short read sequencing, limiting our knowledge of population diversity in these loci. We leveraged existing long read whole-genome sequencing (WGS) data, fosmid technology, and IG targeted single-molecule, real-time (SMRT) long-read sequencing (IG-Cap) to create haplotype-resolved assemblies of the IG Lambda (IGL) locus from 6 ethnically diverse individuals. In addition, we generated 10 diploid assemblies of IGL from a diverse cohort of individuals utilizing IG-Cap. From these 16 individuals, we identified significant allelic diversity, including 36 novel IGLV alleles. In addition, we observed highly elevated single nucleotide variation (SNV) in IGLV genes relative to IGL intergenic and genomic background SNV density. By comparing SNV calls between our high quality assemblies and existing short read datasets from the same individuals, we show a high propensity for false-positives in the short read datasets. Finally, for the first time, we nucleotide-resolved common 5-10 Kb duplications in the IGLC region that contain functional IGLJ and IGLC genes. Together these data represent a significant advancement in our understanding of genetic variation and population diversity in the IGL locus.
Project description:Severe COVID-19 is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against SARS-CoV-2. In contrast, compared to subjects with other infectious or non-infectious lung pathologies, IFNs are over-represented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients, and show IFNs play opposing roles at distinct anatomical sites.