Unknown

Dataset Information

0

Nanobead-based single-molecule pulldown for single cells.


ABSTRACT: Investigation of cell-to-cell variability holds critical physiological and clinical implications. Thus, numerous new techniques have been developed for studying cell-to-cell variability, and these single-cell techniques can also be used to investigate rare cells. Moreover, for studying protein-protein interactions (PPIs) in single cells, several techniques have been developed based on the principle of the single-molecule pulldown (SiMPull) assay. However, the applicability of these single-cell SiMPull (sc-SiMPull) techniques is limited because of their high technical barrier and special requirements for target cells and molecules. Here, we report a highly innovative nanobead-based approach for sc-SiMPull that is based on our recently developed microbead-based, improved version of SiMPull for cell populations. In our sc-SiMPull method, single cells are captured in microwells and lysed in situ, after which commercially available, pre-surface-functionalized magnetic nanobeads are placed in the microwells to specifically capture proteins of interest together with their binding partners from cell extracts; subsequently, the PPIs are examined under a microscope at the single-molecule level. Relative to previously published methods, nanobead-based sc-SiMPull is considerably faster, easier to use, more reproducible, and more versatile for distinct cell types and protein molecules, and yet provides similar sensitivity and signal-to-background ratio. These crucial features should enable universal application of our method to the study of PPIs in single cells.

SUBMITTER: Zhao Q 

PROVIDER: S-EPMC10679481 | biostudies-literature | 2023 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications


Investigation of cell-to-cell variability holds critical physiological and clinical implications. Thus, numerous new techniques have been developed for studying cell-to-cell variability, and these single-cell techniques can also be used to investigate rare cells. Moreover, for studying protein-protein interactions (PPIs) in single cells, several techniques have been developed based on the principle of the single-molecule pulldown (SiMPull) assay. However, the applicability of these single-cell S  ...[more]

Similar Datasets

| S-EPMC4273350 | biostudies-literature
| S-EPMC9523780 | biostudies-literature
| S-EPMC10651132 | biostudies-literature
2020-12-26 | E-MTAB-9033 | biostudies-arrayexpress
2021-05-04 | E-MTAB-9123 | biostudies-arrayexpress
| S-EPMC8826847 | biostudies-literature
| S-EPMC3910167 | biostudies-literature
| S-EPMC5341729 | biostudies-literature
| S-EPMC3377747 | biostudies-literature
| S-EPMC8556369 | biostudies-literature