Project description:BackgroundBladder cancer (BC) is one of the most common malignant neoplasms in the genitourinary tract. We employed the GSE13507 data set from the Gene Expression Omnibus (GEO) database in order to identify key genes related to tumorigenesis, progression, and prognosis in BC patients.MethodsThe data set used in this study included 10 normal bladder mucosae tissue samples and 165 primary BC tissue samples. Differentially expressed genes (DEGs) in the 2 types of samples were identified by GEO2R. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the online website DAVID. The online website STRING was used to construct a protein-protein interaction network. Moreover, the plugins in MCODE and cytoHubba in Cytoscape were employed to find the hub genes and modules in these DEGs.ResultsWe identified 154 DEGs comprising 135 downregulated genes and 19 upregulated genes. The GO enrichment results were mainly related to the contractile fiber part, extracellular region part, actin cytoskeleton, and extracellular region. The KEGG pathway enrichment results mainly comprised type I diabetes mellitus, asthma, systemic lupus erythematosus, and allograft rejection. A module was identified from the protein-protein interaction network. In total, 15 hub genes were selected and 3 of them comprising CALD1, CNN1, and TAGLN were associated with both overall survival and disease-free survival.ConclusionCALD1, CNN1, and TAGLN may be potential biomarkers for diagnosis as well as therapeutic targets in BC patients.
Project description:BackgroundBladder cancer (BC) is a common malignant neoplasm with a high rate of recurrence and progression, despite optimal treatment. There is a pressing need to identify new effective biomarkers for the targeted treatment of BC.MethodsThe key gene CALD1 was screened via weighed gene co-expression network analysis (WGCNA) from encoding protein genes of BC. Clinical and prognostic significance was explored in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Cell Counting Kit-8 (CCK-8), flow cytometry, transwell chamber experiment and nude mouse xenograft assay were performed to test cell growth, apoptosis, migration, invasion and tumorigenesis capacities. Immune correlation was analyzed in The Tumor Immune Estimation Resource (TIMER) database. Relevant signaling pathways were explored using gene set enrichment analysis (GSEA).ResultsIncreased expression of CALD1 was significantly correlated with histological grade, clinical stage, T stage, and lymphatic metastasis. Kaplan-Meier survival curves showed that high CALD1 expression was associated with poor overall survival (OS) and disease-free survival (DFS) in TCGA database, and with poor OS in the four GEO databases. CALD1 promotes growth, migration, invasion, and cell cycle of tumor cell, and inhibits tumor cell apoptosis in vitro and in vivo. CADL1 expression was positively correlated with increased CD274 levels (r=0.357, P=9.71e-14). JAK/STAT signaling pathway was significantly enriched in the high CALD1 expression group. CALD1-mediated PD-L1 overexpression (OE) was via the activation of the JAK/STAT signaling pathway; this effect was blocked by the specific JAK inhibitor Ruxolitinib.ConclusionsCALD1 is a potential molecular marker associated with prognosis. It promotes the malignant progression of BC and upregulates the PD-L1 expression via the JAK/STAT signaling pathway.
Project description:Urothelial carcinoma (UC), the sixth most common cancer in Western countries, includes upper tract urothelial carcinoma (UTUC) and bladder carcinoma (BC) as the most common cancers among UCs (90-95%). BC is the most common cancer and can be a highly heterogeneous disease, including both non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) forms with different oncologic outcomes. Approximately 80% of new BC diagnoses are classified as NMIBC after the initial transurethral resection of the bladder tumor (TURBt). In this setting, intravesical instillation of Bacillus Calmette-Guerin (BCG) is the current standard treatment for intermediate- and high-risk patients. Unfortunately, recurrence occurs in 30% to 40% of patients despite adequate BCG treatment. Radical cystectomy (RC) is currently considered the standard treatment for NMIBC that does not respond to BCG. However, RC is a complex surgical procedure with a recognized high perioperative morbidity that is dependent on the patient, disease behaviors, and surgical factors and is associated with a significant impact on quality of life. Therefore, there is an unmet clinical need for alternative bladder-preserving treatments for patients who desire a bladder-sparing approach or are too frail for major surgery. In this review, we aim to present the strategies in BCG-unresponsive NMIBC, focusing on novel molecular therapeutic targets.
Project description:BackgroundThe anti-carcinogenic properties of aspirin have been observed in some solid tumors. However, the molecular mechanism of therapeutic effects of aspirin on bladder cancer is still indistinct. We introduced a bioinformatics analysis approach, to explore the targets of aspirin in bladder cancer (BC).MethodsTo find out the potential targets of aspirin in BC, we analyzed direct protein targets (DPTs) of aspirin in Drug Bank 5.0. The protein-protein interaction (PPI) network and signaling pathway of aspirin DPTs were then analyzed subsequently. A detailed analysis of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway has shown that aspirin is linked to BC. We identified overexpressed genes in BC comparing with normal samples by Oncomine and genes that interlinked with aspirin target genes in BC by STRING.ResultsFirstly, we explored 16 direct protein targets (DPT) of aspirin. We analyzed the protein-protein interaction (PPI) network and signaling pathways of aspirin DPT. We found that aspirin is closely associated with a variety of cancers, including BC. Then, we classified mutations in 3 aspirin DPTs (CCND1, MYC and TP53) in BC using the cBio Portal database. In addition, we extracted the top 50 overexpressed genes in bladder cancer by Oncomine and predicted the genes associated with the 3 aspirin DPTs (CCND1, MYC and TP53) in BC by STRING. Finally, 5 exact genes were identified as potential therapeutic targets of aspirin in bladder cancer.ConclusionThe analysis of relevant databases will improve our mechanistic understanding of the role of aspirin in bladder cancer. This will guide the direction of our next drug-disease interaction studies.
Project description:Protein expression profiles in rat bladder smooth muscle were compared between animal models of streptozotocin-induced diabetes mellitus (STZ-DM) and age-matched controls at 1 week and 2 months after induction of hyperglycemia with STZ treatment. At each time point, protein samples from four STZ-DM and four age-matched control rat bladder tissues were prepared independently and analyzed together across multiple DIGE gels using a pooled internal standard sample to quantify expression changes with statistical confidence. A total of 100 spots were determined to be significantly changing among the four experimental groups. A subsequent mass spectrometry analysis of the 100 spots identified a total of 56 unique proteins. Of the proteins identified by two-dimensional DIGE/MS, 10 exhibited significant changes 1 week after STZ-induced hyperglycemia, whereas the rest showed differential expression after 2 months. A network analysis of these proteins using MetaCore suggested induction of transcriptional factors that are too low to be detected by two-dimensional DIGE and identified an enriched cluster of down-regulated proteins that are involved in cell adhesion, cell shape control, and motility, including vinculin, intermediate filaments, Ppp2r1a, and extracellular matrix proteins. The proteins that were up-regulated include proteins involved in muscle contraction (e.g. Mrlcb and Ly-GDI), in glycolysis (e.g. alpha-enolase and Taldo1), in mRNA processing (e.g. heterogeneous nuclear ribonucleoprotein A2/B1), in inflammatory response (e.g. S100A9, Annexin 1, and apoA-I), and in chromosome segregation and migration (e.g. Tuba1 and Vil2). Our results suggest that the development of diabetes-related complications in this model involves the down-regulation of structural and extracellular matrix proteins in smooth muscle that are essential for normal muscle contraction and relaxation but also induces proteins that are associated with cell proliferation and inflammation that may account for some of the functional deficits known to occur in diabetic complications of bladder.
Project description:Precision medicine is designed to tailor treatments for individual patients by factoring in each person's specific biology and mechanism of disease. This paradigm shifted from a "one size fits all" approach to "personalized and precision care" requires multiple layers of molecular profiling of biomarkers for accurate diagnosis and prediction of treatment responses. Intensive studies are also being performed to understand the complex and dynamic molecular profiles of bladder cancer. These efforts involve looking bladder cancer mechanism at the multiple levels of the genome, epigenome, transcriptome, proteome, lipidome, metabolome etc. The aim of this short review is to outline the current technologies being used to investigate molecular profiles and discuss biomarker candidates that have been investigated as possible diagnostic and prognostic indicators of bladder cancer.
Project description:In 2014, there was a burst of studies on the molecular subtypes of bladder cancer in the published literature that was made possible by the advances in high-throughput technologies. Based on gene expression profiling, the major molecular classification subdivisions were basal and luminal subtypes, which resembled to those observed in breast cancers. These basal and luminal subtypes were further subdivided by TCGA into squamous, infiltrated, luminal-papillary, luminal/genomically unstable (GU), and neuronal/small cell carcinoma (SCC) subtypes. Recently, an international subtypes consensus project further expanded on the TCGA subtypes by defining a consensus molecular classification (CMC). A multidisciplinary team of experts generated CMC to overcome the difficulties of clinical applications due to several published bladder cancer molecular classifications with various nomenclatures and molecular features. It included six molecular subtypes with the addition of one more luminal subtype (luminal nonspecified) compared to the TCGA subtype classification. The initial research efforts have focused on the characterization of each subtype at the molecular and histopathologic levels, but more recent studies have examined their significance in terms of clinical utility, i.e., biomarkers that inform prognostication and/or to predict therapeutic responses to be tested in future clinical trials. This review provides an overview of recent investigations into the relationship between molecular subtypes and the clinical management of patients with bladder cancer.
Project description:Bladder cancer (BC) is the most common neoplasia of the urothelial tract. Due to its high incidence, prevalence, recurrence and mortality, it remains an unsolved clinical and social problem. The treatment of BC is challenging and, although immunotherapies have revealed potential benefit in a percentage of patients, it remains mostly an incurable disease at its advanced state. Epigenetic alterations, including aberrant DNA methylation, altered chromatin remodeling and deregulated expression of non-coding RNAs are common events in BC and can be driver events in BC pathogenesis. Accordingly, these epigenetic alterations are now being used as potential biomarkers for these disorders and are being envisioned as potential therapeutic targets for the future management of BC. In this review, we summarize the recent findings in these emerging and exciting new aspects paving the way for future clinical treatment of this disease.
Project description:ObjectiveTo identify therapeutic protein targets for bladder cancer (BCa) using Mendelian randomization (MR) and assess potential adverse effects of these targets.MethodsA proteome-wide MR study was conducted to determine causal relationships between plasma proteins and BCa risk. In the discovery stage, the plasma proteins (Exposure) were sourced from the R10 of Finnish database, Olink (619 samples across 2925 proteins) and SomaScan (828 samples across 7596 proteins), and Iceland database. In the replication stage, plasma proteins (Exposure) were sourced from the UK-Biobank-PPP database (54,219 participants and 2940 proteins). Summary-level data for BCa (Outcome) were obtained from the UK Biobank (UKB-SAIGE: cancer of bladder) in the discovery phase and the FinnGen consortium (FinnGen R11: cancer of bladder) in the replication phase. Colocalization and fix-effect meta-analyses were performed to validate MR findings. Finally, phenome-wide association study (Phe-WAS) was conducted to explore the side effects of druggable proteins utilizing UKB-SAIGE encompassing 783 phenotypes.ResultsThe MR analysis identified PSCA, LY6D, and SLURP1 as proteins with a genetic association to BCa risk. SLURP1 was confirmed in the replication phase, with a meta-analysis showing an odds ratio of 1.50 (95% CI: 1.30-1.74, P < 0.001). Phe-WAS indicated potential side effects for these targets.ConclusionThis study provides insights into the causal relationships of plasma proteins with BCa, identifying PSCA, LY6D, and SLURP1 as potential therapeutic targets, with implications for future BCa treatment strategies.
Project description:Histologically, bladder cancer is a heterogeneous group comprising urothelial carcinoma (UC), squamous cell carcinoma, adenocarcinomas (ACs), urachal carcinomas (UrCs), and small cell neuroendocrine carcinomas (SCCs). However, all bladder cancers have been treated so far uniformly, and targeted therapy options are still limited. Thus, we aimed to determine the protein expression/molecular status of commonly used cancer targets (programmed cell death 1 ligand 1 (PD-L1), mismatch repair (MMR), androgen and estrogen receptors (AR/ER), Nectin-4, tumor-associated calcium signal transducer 2 (Tacstd2, Trop-2), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and fibroblast growth factor receptor 3 (FGFR3)) to give first insights into whether patients with SCC, AC/UrCs, and squamous-differentiated carcinomas (Sq-BLCA) of the bladder could be eligible for targeted therapies. In addition, for MMR-deficient tumors, microsatellite instability was analyzed. We completed our own data with molecular data from The Cancer Genome Atlas (TCGA). We present ratios for each drug and cumulative ratios for multiple therapeutic options for each nonurothelial subtype. For example, 58.9% of SCC patients, 33.5% of AC/UrCs patients, and 79.3% of Sq-BLCA patients would be eligible for at least one of the analyzed targets. In conclusion, our findings hold promise for targeted therapeutic approaches in selected patients in the future, as various drugs could be applied according to the biomarker status.