Project description:The composition of metagenomic communities within the human body often reflects localized medical conditions such as upper respiratory diseases and gastrointestinal diseases. Fast and accurate computational tools to flag anomalous metagenomic samples from typical samples are desirable to understand different phenotypes, especially in contexts where repeated, long-duration temporal sampling is done. Here, we present Automated Metagenome Anomaly Detection (AMAnD), which utilizes two types of Deep Support Vector Data Description (DeepSVDD) models; one trained on taxonomic feature space output by the Pan-Genomics for Infectious Agents (PanGIA) taxonomy classifier and one trained on kmer frequency counts. AMAnD's semi-supervised one-class approach makes no assumptions about what an anomaly may look like, allowing the flagging of potentially novel anomaly types. Three diverse datasets are profiled. The first dataset is hosted on the National Center for Biotechnology Information's (NCBI) Sequence Read Archive (SRA) and contains nasopharyngeal swabs from healthy and COVID-19-positive patients. The second dataset is also hosted on SRA and contains gut microbiome samples from normal controls and from patients with slow transit constipation (STC). AMAnD can learn a typical healthy nasopharyngeal or gut microbiome profile and reliably flag the anomalous COVID+ or STC samples in both feature spaces. The final dataset is a synthetic metagenome created by the Critical Assessment of Metagenome Annotation Simulator (CAMISIM). A control dataset of 50 well-characterized organisms was submitted to CAMISIM to generate 100 synthetic control class samples. The experimental conditions included 12 different spiked-in contaminants that are taxonomically similar to organisms present in the laboratory blank sample ranging from one strain tree branch taxonomic distance away to one family tree branch taxonomic distance away. This experiment was repeated in triplicate at three different coverage levels to probe the dependence on sample coverage. AMAnD was again able to flag the contaminant inserts as anomalous. AMAnD's assumption-free flagging of metagenomic anomalies, the real-time model training update potential of the deep learning approach, and the strong performance even with lightweight models of low sample cardinality would make AMAnD well-suited to a wide array of applied metagenomics biosurveillance use-cases, from environmental to clinical utility.
Project description:Unobtrusive and accurate ambulatory methods are needed to monitor long-term sleep patterns for improving health. Previously developed ambulatory sleep detection methods rely either in whole or in part on self-reported diary data as ground truth, which is a problem, since people often do not fill them out accurately. This paper presents an algorithm that uses multimodal data from smartphones and wearable technologies to detect sleep/wake state and sleep onset/offset using a type of recurrent neural network with long-short-term memory (LSTM) cells for synthesizing temporal information. We collected 5580 days of multimodal data from 186 participants and compared the new method for sleep/wake classification and sleep onset/offset detection to, first, nontemporal machine learning methods and, second, a state-of-the-art actigraphy software. The new LSTM method achieved a sleep/wake classification accuracy of 96.5%, and sleep onset/offset detection F1 scores of 0.86 and 0.84, respectively, with mean absolute errors of 5.0 and 5.5 min, res-pectively, when compared with sleep/wake state and sleep onset/offset assessed using actigraphy and sleep diaries. The LSTM results were statistically superior to those from nontemporal machine learning algorithms and the actigraphy software. We show good generalization of the new algorithm by comparing participant-dependent and participant-independent models, and we show how to make the model nearly realtime with slightly reduced performance.
Project description:Deep Neural Networks (DNN) have achieved state-of-the-art performance in medical image classification and are increasingly being used for disease diagnosis. However, these models are quite complex and that necessitates the need to reduce the model complexity for their use in low-power edge applications that are becoming common. The model complexity reduction techniques in most cases comprise of time-consuming operations and are often associated with a loss of model performance in proportion to the model size reduction. In this paper, we propose a simplified model complexity reduction technique based on reducing the number of channels for any DNN and demonstrate the complexity reduction approaches for the ResNet-50 model integration in low-power devices. The model performance of the proposed models was evaluated for multiclass classification of CXR images, as normal, pneumonia, and COVID-19 classes. We demonstrate successive size reductions down to 75%, 87%, and 93% reduction with an acceptable classification performance reduction of 0.5%, 0.5%, and 0.8% respectively. We also provide the results for the model generalization, and visualization with Grad-CAM at an acceptable performance and interpretable level. In addition, a theoretical VLSI architecture for the best performing architecture has been presented.
Project description:BackgroundWith the ever-increasing amount of medical imaging data, the demand for algorithms to assist clinicians has amplified. Unsupervised anomaly detection (UAD) models promise to aid in the crucial first step of disease detection. While previous studies have thoroughly explored fairness in supervised models in healthcare, for UAD, this has so far been unexplored.MethodsIn this study, we evaluated how dataset composition regarding subgroups manifests in disparate performance of UAD models along multiple protected variables on three large-scale publicly available chest X-ray datasets. Our experiments were validated using two state-of-the-art UAD models for medical images. Finally, we introduced subgroup-AUROC (sAUROC), which aids in quantifying fairness in machine learning.FindingsOur experiments revealed empirical "fairness laws" (similar to "scaling laws" for Transformers) for training-dataset composition: Linear relationships between anomaly detection performance within a subpopulation and its representation in the training data. Our study further revealed performance disparities, even in the case of balanced training data, and compound effects that exacerbate the drop in performance for subjects associated with multiple adversely affected groups.InterpretationOur study quantified the disparate performance of UAD models against certain demographic subgroups. Importantly, we showed that this unfairness cannot be mitigated by balanced representation alone. Instead, the representation of some subgroups seems harder to learn by UAD models than that of others. The empirical "fairness laws" discovered in our study make disparate performance in UAD models easier to estimate and aid in determining the most desirable dataset composition.FundingEuropean Research Council Deep4MI.
Project description:Wrist Fracture is the most common type of fracture with a high incidence rate. Conventional radiography (i.e. X-ray imaging) is used for wrist fracture detection routinely, but occasionally fracture delineation poses issues and an additional confirmation by computed tomography (CT) is needed for diagnosis. Recent advances in the field of Deep Learning (DL), a subfield of Artificial Intelligence (AI), have shown that wrist fracture detection can be automated using Convolutional Neural Networks. However, previous studies did not pay close attention to the difficult cases which can only be confirmed via CT imaging. In this study, we have developed and analyzed a state-of-the-art DL-based pipeline for wrist (distal radius) fracture detection-DeepWrist, and evaluated it against one general population test set, and one challenging test set comprising only cases requiring confirmation by CT. Our results reveal that a typical state-of-the-art approach, such as DeepWrist, while having a near-perfect performance on the general independent test set, has a substantially lower performance on the challenging test set-average precision of 0.99 (0.99-0.99) versus 0.64 (0.46-0.83), respectively. Similarly, the area under the ROC curve was of 0.99 (0.98-0.99) versus 0.84 (0.72-0.93), respectively. Our findings highlight the importance of a meticulous analysis of DL-based models before clinical use, and unearth the need for more challenging settings for testing medical AI systems.
Project description:Healthcare fraud is considered a challenge for many societies. Health care funding that could be spent on medicine, care for the elderly or emergency room visits are instead lost to fraudulent activities by materialistic practitioners or patients. With rising healthcare costs, healthcare fraud is a major contributor to these increasing healthcare costs. This study evaluates previous anomaly detection machine learning models and proposes an unsupervised framework to identify anomalies using a Generative Adversarial Network (GANs) model. The GANs anomaly detection (GAN-AD) model was applied on two different healthcare provider data sets. The anomalous healthcare providers were further analysed through the application of classification models with the logistic regression and extreme gradient boosting models showing good performance. Results from the SHapley Additive exPlanation (SHAP) also signifies that the predictors used explain the anomalous healthcare providers.
Project description:We develop a real-time anomaly detection method for directed activity on large, sparse networks. We model the propensity for future activity using a dynamic logistic model with interaction terms for sender- and receiver-specific latent factors in addition to sender- and receiver-specific popularity scores; deviations from this underlying model constitute potential anomalies. Latent nodal attributes are estimated via a variational Bayesian approach and may change over time, representing natural shifts in network activity. Estimation is augmented with a case-control approximation to take advantage of the sparsity of the network and reduces computational complexity from O(N 2) to O(E), where N is the number of nodes and E is the number of observed edges. We run our algorithm on network event records collected from an enterprise network of over 25,000 computers and are able to identify a red team attack with half the detection rate required of the model without latent interaction terms.
Project description:In this paper we explore the use of income inequality metrics such as Gini or Palma coefficients as a tool to identify anomalies via capsule networks. We demonstrate how the interplay between primary and class capsules gives rise to differences in behavior regarding anomalous and normal input which can be exploited to detect anomalies. Our setup for anomaly detection requires supervision in a form of known outliers. We derive several criteria for capsule networks and apply them to a number of Computer Vision benchmark datasets (MNIST, Fashion-MNIST, Kuzushiji-MNIST and CIFAR10), as well as to the dataset of skin lesion images (HAM10000) and the dataset of CRISPR-Cas9 off-target pairs. The proposed methods outperform the competitors in the majority of considered cases.