Project description:The fleeting lifetimes of the transition states (TSs) of chemical reactions make determination of their three-dimensional structures by diffraction methods a challenge. Here, we used packing interactions within the core of a protein to stabilize the planar TS conformation for rotation around the central carbon-carbon bond of biphenyl so that it could be directly observed by x-ray crystallography. The computational protein design software Rosetta was used to design a pocket within threonyl-transfer RNA synthetase from the thermophile Pyrococcus abyssi that forms complementary van der Waals interactions with a planar biphenyl. This latter moiety was introduced biosynthetically as the side chain of the noncanonical amino acid p-biphenylalanine. Through iterative rounds of computational design and structural analysis, we identified a protein in which the side chain of p-biphenylalanine is trapped in the energetically disfavored, coplanar conformation of the TS of the bond rotation reaction.
Project description:BackgroundDairy cow milking practices require cleaning and disinfection of the teat skin before and after milking to ensure the safety and quality of milk and prevent intramammary infections. Antimicrobial proteins of natural origin can be valuable alternatives to traditional disinfectants. In a recent field trial, we demonstrated that a teat dip based on a nisin A-producing Lactococcus cremoris (L) had comparable efficacy to conventional iodophor dip (C) in preventing dairy cow mastitis. Here, we present the differential shotgun proteomics investigation of the milk collected during the trial.MethodsFour groups of quarter milk samples with low (LSCC) and high somatic cell count (HSCC) collected at the beginning (T0) and end (TF) of the trial were analyzed for a total of 28 LSCC (14 LSCC T0 and 14 LSCC TF) and 12 HSCC (6 HSCC T0 and 6 HSCC TF) samples. Milk proteins were digested into peptides, separated by nanoHPLC, and analyzed by tandem mass spectrometry (LC-MS/MS) on an Orbitrap Fusion Tribrid mass spectrometer. The proteins were identified with MaxQuant and interaction networks of the differential proteins were investigated with STRING. The proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD045030.ResultsIn healthy milk (LSCC), we detected 90 and 80 differential proteins at T0 and TF, respectively. At TF, the Lactococcus group showed higher levels of antimicrobial proteins. In mastitis milk (HSCC), we detected 88 and 106 differential proteins at T0 and TF, respectively. In the Lactococcus group, 14 proteins with antimicrobial and immune defense functions were enriched at TF vs. 4 proteins at T0. Cathelicidins were among the most relevant enriched proteins. Western immunoblotting validation confirmed the differential abundance.ConclusionsAt T0, the proteomic differences observed in healthy milk of the two groups were most likely dependent on physiological variation. On the other hand, antimicrobial and immune defense functions were higher in the milk of cows with mammary gland inflammation of the Lactococcus-treated group. Among other factors, the immunostimulatory action of nisin A might be considered as a contributor.
Project description:In forensic investigations involving the identification of unknown deceased individuals, isotope analysis can provide valuable provenance information. This is especially pertinent when primary identifiers (i.e., DNA, dactyloscopy, etc.) fail to yield matches. The isotopic composition of human tissues is linked to that of the food consumed, potentially allowing the identification of regions of origin. However, the isotopic composition of deceased newborns and infants fed with milk formula may be influenced by that of the prepared milk. The findings contribute towards the possibility to isotopically identify bottle-fed infants. More importantly, the data convincingly show that the Sr isotope composition of the prepared milk is determined by that of the formula and not the (local) tap water, thereby limiting the potential of Sr isotope analysis for determining the geological or geographical origin in formula-fed babies in medico-legal cases.
Project description:In pasture-based systems, changes in dairy herd habitat due to seasonality results in the exposure of animals to different environmental niches. These niches contain distinct microbial communities that may be transferred to raw milk, with potentially important food quality and safety implications for milk producers. It is postulated that the extent to which these microorganisms are transferred could be limited by the inclusion of a teat preparation step prior to milking. High-throughput sequencing on a variety of microbial niches on farms was used to study the patterns of microbial movement through the dairy production chain and, in the process, to investigate the impact of seasonal housing and the inclusion/exclusion of a teat preparation regime on the raw milk microbiota from the same herd over two sampling periods, i.e., indoor and outdoor. Beta diversity and network analyses showed that environmental and milk microbiotas separated depending on whether they were sourced from an indoor or outdoor environment. Within these respective habitats, similarities between the milk microbiota and that of teat swab samples and, to a lesser extent, fecal samples were apparent. Indeed, SourceTracker identified the teat surface as the most significant source of contamination, with herd feces being the next most prevalent source of contamination. In milk from cows grazing outdoors, teat prep significantly increased the numbers of total bacteria present. In summary, sequence-based microbiota analysis identified possible sources of raw milk contamination and highlighted the influence of environment and farm management practices on the raw milk microbiota. The composition of the raw milk microbiota is an important consideration from both a spoilage perspective and a food safety perspective and has implications for milk targeted for direct consumption and for downstream processing. Factors that influence contamination have been examined previously, primarily through the use of culture-based techniques. We describe here the extensive application of high-throughput DNA sequencing technologies to study the relationship between the milk production environment and the raw milk microbiota. The results show that the environment in which the herd was kept was the primary driver of the composition of the milk microbiota composition.
Project description:Bottle-fed infants are at higher risk for rapid weight gain compared with breastfed infants. Few studies have attempted to disentangle effects of feeding mode, milk composition and relevant covariates on feeding interactions and outcomes. The objective of the present study was to compare effects of breastfeeding directly at the breast versus bottle-feeding expressed breast milk on feeding interactions. Mothers with <6-month-old infants (n = 47) participated in two counterbalanced, feeding observations. Mothers breastfed their infants directly from the breast during one visit (breast condition) and bottle-fed their infants expressed breast milk during the other (bottle condition). Masked raters later coded videos using the Nursing Child Assessment Parent-Child Interaction Feeding Scale. Infant intake was assessed. Mothers self-reported sociodemographic characteristics, infant feeding patterns (i.e. percentage of daily feedings from bottles) and level of pressuring feeding style. Mother and infant behaviours were similar during breast and bottle conditions. Percent bottle-feeding moderated effects of condition on intake (P = 0.032): greater percent bottle-feeding predicted greater intake during the bottle compared with breast condition. Effects of feeding mode were not moderated by parity or pressuring feeding style, but, regardless of condition, multiparous mothers fed their infants more than primiparous mothers (P = 0.028), and pressuring feeding style was positively associated with infant intake (P = 0.045). Findings from the present study do not support the hypothesis that feeding mode directly impacts dyadic interaction for predominantly breastfeeding mothers and infants, but rather suggest between-subject differences in feeding experiences and styles predict feeding outcomes for this population.
Project description:Butyric acid producing clostridia (BAPC) cause the so-called late-blowing defect, a serious quality problem in semi-hard and hard cheeses. Late-blown cheeses are characterized by undesired slits and cracks, irregular eyes, and off-flavors due to excessive amounts of gas and organic acids produced by clostridia. Clostridial transfer to raw milk can occur during milking through dirty teats. Therefore, teat cleaning before milking is a key factor in preventing clostridial contamination of the milk. However, different cleaning methods are used, and little information is available on the efficacy of routine teat cleaning in reducing clostridial endospores. The main objectives of this study were to assess the extent of udder contamination with BAPC spores and to investigate the efficacy of routine teat cleaning on BAPC spore counts in milk. In a longitudinal study, eight dairy farms were visited during five sampling events. Clostridial spore counts were quantified from teat skin before and after routine teat cleaning, in pooled quarter milk samples from individual cows, and in bulk tank milk samples using a most probable number method. In addition, farm management data were collected periodically through a survey, and average cow cleanliness was assessed by a veterinarian. On average, teat cleaning resulted in a 0.6 log unit reduction in BAPC spores on teat skin, and a strong positive correlation was found between BAPC spore concentrations on teat skin after cleaning and in pooled quarter milk samples. Seasonal variations and the potential influence of differences in farm management were also noted. Interestingly, average cow cleanliness correlated strongly with BAPC spore levels in milk, suggesting the potential for a quick and rough estimation method of clostridial contamination that could be implemented by farmers.
Project description:BackgroundBovine mastitis is a major challenge in dairy farms. Since the agents commonly used for pre- and post-dipping can affect the udder health by modifying milk microbiota, alternative products are needed. This study aimed to evaluate the effect of the use of pre- and post-dipping formulations containing the fermented broth of Nisin A-producing Lactococcus cremoris FT27 strain (treated group, TR) on the abundance and biodiversity of milk microbiota as compared to iodine-based commercial disinfectants (control group, CTR) during a three-month trial. The experiment was conducted on 20 dairy cows, divided into two groups (CTR and TR) of 10 lactating cows each. Milk samples were collected from two selected healthy quarters of each cow at 3 time-points. Microbial communities were investigated by cultural and sequence-based methods, and analyzed through bioinformatic and statistical approaches.ResultsClear differences in bacterial community composition were observed among groups, with higher species richness in TR, especially of Staphylococcus, Enterococcus, Lactococcus, and Streptococcus genera. The microbiota was dominated by Firmicutes, followed by Actinobacteriota, Proteobacteria, and Bacteroidota. Staphylococcaceae family was significantly higher in TR (p < 0.009), whereas Carnobacteriaceae, Mycobacteriaceae, and Pseudomonadaceae were significantly lower (p = 0.005, p = 0.001, and p = 0.040, respectively). CTR had considerably higher abundances of the genera Alkalibacterium (p = 0.011), Pseudomonas_E (p = 0.045), Corynebacterium (p = 0.004), and Alloiococcus (p = 0.004), and lower abundances of Staphylococcus (p < 0.009). Milk microbiota changed noticeably during the experimental period, regardless of treatment. A significant decrease was observed in both groups for Firmicutes_A phylum, with an increment in Actinobacteriota phylum, Propionibacteriaceae family, and Cutibacterium genus. Streptococcaceae significantly decreased in CTR (p = 0.013) and rose in TR (p = 0.001). Several differences were observed between the two groups during the experimental period. Streptococcus genus almost disappeared in CTR (p = 0.013), whereas it significantly increased in TR (p = 0.001). Three and twelve enriched groups were significantly identified respectively in CTR and TR using LEfSe.ConclusionsThe use of Nisin A-based teat dip formulations could be linked to greater microbial diversity compared to commercial products. Despite the influence of seasonality, the experimental formulations maintained higher milk biodiversity, suggesting that lactic acid bacteria metabolites prevent alterations in the milk microbiota.
Project description:The supplementation of animal feed with microbial additives remains questioning for the traditional or quality label raw milk cheeses with regard to microbial transfer to milk. We evaluated the effect of dietary administration of live yeast on performance and microbiota of raw milk, teat skin, and bedding material of dairy cows. Two balanced groups of cows (21 primiparous 114 ± 24 DIM, 18 multiparous 115 ± 33 DIM) received either a concentrate supplemented with Saccharomyces cerevisiae CNCM I-1077 (1 × 1010 CFU/d) during four months (LY group) or no live yeast (C group). The microbiota in individual milk samples, teat skins, and bedding material were analysed using culture dependent techniques and high-throughput amplicon sequencing. The live yeast supplementation showed a numerical increase on body weight over the experiment and there was a tendency for higher milk yield for LY group. A sequence with 100% identity to that of the live yeast was sporadically found in fungal amplicon datasets of teat skin and bedding material but never detected in milk samples. The bedding material and teat skin from LY group presented a higher abundance of Pichia kudriavzevii reaching 53% (p < 0.05) and 10% (p < 0.05) respectively. A significant proportion of bacterial and fungal ASVs shared between the teat skin and the milk of the corresponding individual was highlighted.
Project description:IntroductionBreastfeeding naturally enables the coordination of sucking, swallowing, and respiration patterns for safe feeding. When breastfeeding is not possible a feeding device that releases milk in response to intra-oral vacuum could potentially offer improved coordination of sucking, swallowing, and breathing patterns compared to conventional devices. The aim of the study is to evaluate the effect of a valved infant-bottle with an ergonomic teat compared to a standard infant-bottle.MethodsThis unblinded randomized controlled trial focused on late preterm infants fed by bottle for at least three meals over the day, admitted to the Neonatal Unit of Sant'Anna Hospital (Turin, Italy). Infants were randomized to be fed with a valved infant-bottle with an ergonomic teat (B-EXP arm) or with a standard infant-bottle (B-STD arm). Monitoring included a simultaneous synchronized recording of sucking, swallowing and respiration. The main outcome was the swallowing/breathing ratio.ResultsForty infants (20 B-EXP arm; 20 B-STD arm) with a median gestational age of 35.0 weeks (IQR 35.0-36.0 weeks) completed the study. Four infants were censored for the presence of artifacts in the polygraphic traces. The median swallowing/breathing ratio was 1.11 (1.03-1.23) in the B-EXP arm and 1.75 (1.21-2.06) in the B-STD (p = .003). A lower frequency of swallowing events during the inspiratory phase of breathing was observed in B-EXP arm compared with B-STD arm (p = 0.013).DiscussionThe valved infant-bottle with an ergonomic teat improves the coordination of sucking-swallowing-respiration and limits the risk of inhalation reducing the frequency of swallowing during the inspiratory phase.
Project description:Recently, a number of studies reported that casein was composed of various multifunctional bioactive peptides such as casein phosphopeptide and β-casochemotide-1 that bind calcium ions and induce macrophage chemotaxis, which is crucial for bone homeostasis and bone fracture repair by cytokines secreted in the process. We hypothesized that the effects of the multifunctional biopeptides in casein would contribute to improving bone regeneration. Thus, we designed a tissue engineering platform that consisted of casein and polyvinyl alcohol, which was a physical-crosslinked scaffold (milk-derived protein; MDP), via simple freeze-thaw cycles and performed surface modification using 3,4-dihydroxy-l-phenylalanine (DOPA), a mussel adhesive protein, for immobilizing adhesive proteins and cytokines for recruiting cells in vivo (MDP-DOPA). Both the MDP and MDP-DOPA groups proved indirectly contribution of macrophages migration as RAW 264.7 cells were highly migrated toward materials by contained bioactive peptides. We implanted MDP and MDP-DOPA in a mouse calvarial defect orthotopic model and evaluated whether MDP-DOPA showed much faster mineral deposition and higher bone density than that of the no-treatment and MDP groups. The MDP-DOPA group showed the accumulation of host M2 macrophages and mesenchymal stem cells (MSCs) around the scaffold, whereas MDP presented mostly M1 macrophages in the early stage.